cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A280383 Numbers n such that n-1 has the same count of prime factors as n+1 when including multiplicity and also when not.

Original entry on oeis.org

4, 6, 12, 18, 19, 30, 34, 42, 51, 55, 56, 60, 72, 86, 92, 94, 102, 108, 138, 142, 144, 150, 160, 180, 184, 186, 192, 198, 202, 204, 214, 216, 218, 220, 228, 236, 240, 243, 248, 249, 266, 270, 282, 300, 302, 304, 307, 312, 320, 322, 328, 340, 341, 348, 349, 392, 394, 412, 414, 416, 420, 424, 432, 446, 452, 462, 470, 472, 476, 491, 516, 518, 522, 534, 536, 544, 552, 570, 580, 582, 590, 600, 604, 618, 634, 638, 642, 660, 664, 668, 670, 680, 686, 688, 696, 698, 701, 722
Offset: 1

Views

Author

Rick L. Shepherd, Jan 02 2017

Keywords

Comments

First differs from its subsequence A074997 at a(97) = 701 because A074997(97) = 722.

Examples

			The number 19 is a term because 18 = 2*3^2 and 20 = 2^2*5 each have two distinct prime factors and each have three prime factors when counted with multiplicity.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[800],PrimeNu[#]==PrimeNu[#+2]&&PrimeOmega[#]==PrimeOmega[#+2]&]+1 (* Harvey P. Dale, Jul 12 2023 *)
  • PARI
    IsInA280383(n) = n > 1 && bigomega(n-1) == bigomega(n+1) && omega(n-1) == omega(n+1)

Formula

Sequence is A088070 INTERSECT A280382.

A115167 Odd numbers k such that k-1 and k+1 have the same number of prime divisors with multiplicity.

Original entry on oeis.org

5, 19, 29, 43, 51, 55, 67, 69, 77, 89, 115, 151, 171, 173, 187, 189, 197, 233, 237, 243, 245, 249, 267, 271, 283, 285, 291, 295, 307, 317, 329, 341, 343, 349, 355, 403, 405, 411, 427, 429, 435, 437, 461, 489, 491, 507, 569, 571, 593, 597, 603, 605, 653, 665
Offset: 1

Views

Author

Cino Hilliard, Mar 03 2006

Keywords

Crossrefs

Subsequence of A280382.

Programs

  • Mathematica
    s = {}; o1 = 0; Do[o2 = PrimeOmega[n]; If[o1 == o2, AppendTo[s, n-1]]; o1 = o2, {n, 2, 666, 2}]; s (* Amiram Eldar, Sep 23 2019 *)
    Select[Mean/@SequencePosition[PrimeOmega[Range[700]],{x_,,x}],OddQ] (* Harvey P. Dale, Jan 11 2024 *)
  • PARI
    g(n) = forstep(x=3, n, 2, p1=bigomega(x-1); p2=bigomega(x+1); if(p1==p2, print1(x",")))
    
  • Python
    from sympy import primeomega
    def aupto(limit):
      prv, nxt, alst = 1, 2, []
      for n in range(3, limit+1, 2):
        if prv == nxt: alst.append(n)
        prv, nxt = nxt, primeomega(n+3)
      return alst
    print(aupto(665)) # Michael S. Branicky, May 19 2021

A280469 Numbers n such that n-1 and n+1 are squarefree and have the same number of prime factors.

Original entry on oeis.org

4, 6, 12, 18, 30, 34, 42, 56, 60, 72, 86, 92, 94, 102, 108, 138, 142, 144, 150, 160, 180, 184, 186, 192, 198, 202, 204, 214, 216, 218, 220, 228, 236, 240, 248, 266, 270, 282, 300, 302, 304, 312, 320, 322, 328, 340, 348, 392, 394, 412, 414, 416, 420, 432, 446
Offset: 1

Views

Author

Rick L. Shepherd, Jan 03 2017

Keywords

Comments

For a given term n of this sequence, n-1 and n+1 are both squarefree k-almost primes for the same k. The sequence is thus the union of the averages (arithmetic means) of twin prime pairs (A014574), the averages of twin squarefree semiprime pairs, the averages of twin squarefree 3-almost prime pairs, ... (where "twin ... pairs" means the members of each pair differ by two). A subsequence of A280382 and of A280383.

Examples

			The number 34 is a term because 33 = 3*11 and 35 = 5*7, a twin semiprime pair. Unlike A280382 and A280383, 19 is not a term here because 18 = 2*3^2 and 20  = 2^2*5, neither of which is squarefree.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 500, And[Times @@ First@ # == 1, SameQ @@ Last@ #] &@ Transpose@ Map[{Boole@ SquareFreeQ@ #, PrimeNu@ #} &, # + {-1, 1}] &] (* Michael De Vlieger, Jan 30 2017 *)
  • PARI
    IsInA280469(n) = n > 1 && issquarefree(n-1) && issquarefree(n+1) && omega(n-1) == omega(n+1)

A328359 Numbers k such that Omega(k - 2) = Omega(k) = Omega(k + 2) where Omega = A001222.

Original entry on oeis.org

5, 68, 93, 121, 143, 172, 185, 188, 203, 215, 217, 219, 244, 284, 289, 301, 303, 321, 342, 393, 404, 413, 415, 428, 436, 471, 490, 517, 535, 570, 581, 604, 669, 687, 697, 788, 791, 815, 858, 870, 892, 1014, 1057, 1079, 1135, 1137, 1139, 1147, 1167, 1205, 1206, 1208, 1210, 1255, 1268, 1276
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 14 2019

Keywords

Examples

			5 is a term because A001222(3) = A001222(5) = A001222(7) = 1;
68 is a term because A001222(66) = A001222(68) = A001222(70) = 3;
93 is a term because A001222(91) = A001222(93) = A001222(95) = 2.
		

Crossrefs

Programs

A086806 Sarrus numbers k such that k-1 and k+1 have the same number of prime divisors (counted with multiplicity).

Original entry on oeis.org

341, 13747, 19951, 35333, 60787, 137149, 150851, 387731, 458989, 617093, 769757, 1104349, 1251949, 1277179, 1397419, 1463749, 1507963, 1826203, 2134277, 2205967, 2617451, 2976487, 3345773, 4361389, 6474691, 6955541, 8095447
Offset: 1

Views

Author

Jason Earls, Aug 05 2003

Keywords

Examples

			341 is a pseudoprime to base 2 while 340 = 2^2*5*17 and 342 = 2*3^2*19 each have four primes dividing them.
		

Crossrefs

Intersection of A001567 and A280382.
Cf. A001222.

Programs

  • Mathematica
    PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[9224390], !PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PrimeFactorExponentsAdded[ # - 1] == PrimeFactorExponentsAdded[ # + 1] & ]

Extensions

More terms from Robert G. Wilson v, Aug 13 2003
Showing 1-5 of 5 results.