A344687 a(n) is the lowest nonnegative exponent k such that n!^k is the product of the divisors of n!.
0, 1, 2, 4, 8, 15, 30, 48, 80, 135, 270, 396, 792, 1296, 2016, 2688, 5376, 7344, 14688, 20520, 30400, 48000, 96000, 121440, 170016, 266112, 338688, 458640, 917280, 1166400, 2332800, 2764800, 3932160, 6082560, 8211456, 9797760, 19595520, 30233088, 42550272
Offset: 1
Keywords
Examples
For n = 4, n! = 24 = 2^3 * 3, which has (3+1)*(1+1) = 8 divisors: {1,2,3,4,6,8,12,24} whose product is 331776 = (24)^4 = (4!)^4. So a(4) = 4.
Programs
-
Mathematica
Join[{0},Table[DivisorSigma[0,n!]/2,{n,2,39}]] (* Stefano Spezia, Aug 18 2021 *)
-
PARI
a(n) = if (n==1, 0, numdiv(n!)/2); \\ Michel Marcus, Aug 18 2021
-
Python
def a(n): d = {} for i in range(2, n+1): tmp = i j = 2 while(tmp != 1): if(tmp % j == 0): d.setdefault(j, 0) tmp //= j d[j] += 1 else: j += 1 res = 1 for i in d.values(): res *= (i+1) return res // 2
-
Python
from math import prod from collections import Counter from sympy import factorint def A344687(n): return prod(e+1 for e in sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values())//2 # Chai Wah Wu, Jun 25 2022
Comments