A280448 Sum of the GCDs of the smaller and larger parts of the partitions of 2n into two squarefree parts.
1, 3, 4, 4, 6, 10, 9, 7, 6, 20, 15, 11, 17, 28, 19, 11, 23, 23, 25, 27, 36, 48, 30, 24, 12, 55, 16, 35, 39, 56, 41, 20, 55, 73, 55, 44, 50, 81, 65, 39, 53, 96, 56, 71, 33, 97, 63, 40, 29, 53, 88, 83, 71, 63, 91, 68, 98, 126, 78, 87, 80, 134, 65, 40, 107, 147, 89, 107, 119
Offset: 1
Programs
-
Maple
with(numtheory): A280448:=n->add(gcd(2*n-i, i)*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280448(n), n=1..100);
-
Mathematica
Table[Sum[GCD[k, 2*n - k]*MoebiusMu[k]^2 * MoebiusMu[2*n - k]^2, {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Jan 05 2017 *)
-
PARI
for(n=1,50, print1(sum(k=1,n, gcd(k,2*n-k) * (moebius(k))^2 *(moebius(2*n-k))^2), ", ")) \\ G. C. Greubel, Jan 05 2017
Formula
a(n) = Sum_{i=1..n} gcd(i,2n-i) * mu(i)^2 * mu(2n-i)^2, where mu is the Möbius function (A008683).