A280581 a(n) = the product of divisors of sum of divisors of n.
1, 3, 8, 7, 36, 1728, 64, 225, 13, 5832, 1728, 21952, 196, 331776, 331776, 31, 5832, 1521, 8000, 3111696, 32768, 10077696, 331776, 46656000000, 31, 3111696, 2560000, 9834496, 810000, 139314069504, 32768, 250047, 254803968, 8503056, 254803968, 8281, 1444
Offset: 1
Keywords
Examples
For n = 5; a(n) = product of divisors of sigma(5) = 1*2*3*6 = 36.
Links
Programs
-
Magma
[&*[d: d in Divisors(SumOfDivisors(n))]: n in [1..100]]
-
Mathematica
Table[Times @@ Divisors@ DivisorSigma[1, n], {n, 37}] (* Michael De Vlieger, Jan 06 2017 *) a[n_] := (s = DivisorSigma[1, n])^(DivisorSigma[0, s]/2); Array[a, 40] (* Amiram Eldar, Jun 26 2022 *)
-
PARI
a(n) = my(k = 1); fordiv(sigma(n), d, k*=d); k; \\ Michel Marcus, Jan 06 2017
-
Python
from math import isqrt from sympy import divisor_count, divisor_sigma def A280581(n): return (lambda m:isqrt(m)**c if (c:=divisor_count(m)) & 1 else m**(c//2))(divisor_sigma(n)) # Chai Wah Wu, Jun 25 2022
Comments