A280879 Occurrences of decrease of the probability density P(n) of coprime numbers k,m, satisfying 1 <= k <= a(n) and 1 <= m <= a(n), and a(n) congruent to 1 (mod 2) and a(n) not congruent to 3 (mod 6).
5005, 6545, 7315, 7735, 8645, 8855, 10465, 11165, 11935, 14245, 25025, 32725, 35035, 36575, 38675, 43225, 44275, 45815, 51205, 52325, 54145, 55055, 55825, 59675, 60515, 61985, 65065, 71225, 71995, 73255, 78155, 80465, 83545, 85085, 95095, 97405, 99715
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..102 from A.H.M. Smeets)
Programs
-
PARI
P(n) = (2 *sum(j=1, n, eulerphi(j)) - 1)/n^2; isok(n) = (n % 2) && ((n % 6) != 3) && (P(n) < P(n-1)); \\ Michel Marcus, Jan 29 2017
-
Python
from fraction import gcd t = 1 to = 1 i = 1 x = 1 while x > 0: x = x + 1 y = 0 while y < x: y = y + 1 if gcd(x,y) == 1: t = t + 2 e = t*(x-1)*(x-1) - to*x*x if (e < 0 and x%2 == 1 and x%6 != 3): print(i,x) i = i + 1 to = t
-
Python
from sympy import totient A280879_list, n, t = [], 1, 1 while len(A280879_list) < 1000: n += 1 h = totient(n) t2 = t+h if n % 2 and n % 6 != 3 and 2*(n*(h*n - 2*t2 + 1) + t2) < 1: A280879_list.append(n) t = t2 # Chai Wah Wu, Feb 11 2017
Comments