A280877 Occurrences of decrease of the probability density P(a(n)) of coprime numbers k,m, satisfying 1 <= k <= a(n) and 1 <= m <= a(n); i.e., P(a(n)) < P(a(n)-1).
2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128
Offset: 1
Keywords
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..5682
- Mark Kac, Statistical independence in probability, analysis and number theory, Carus Monograph 12, Math. Assoc. Amer., 1959, pp. 53-79.
Programs
-
Mathematica
P[n_] := P[n] = (2 Sum[CoprimeQ[i, j] // Boole, {i, n}, {j, i-1}] + 1)/n^2; Select[Range[2, 200], P[#] < P[#-1]&] (* Jean-François Alcover, Nov 15 2019 *)
-
PARI
P(n) = sum(i=1, n, sum(j=1, n, gcd(i,j)==1))/n^2; isok(n) = P(n) < P(n-1); \\ Michel Marcus, Jan 28 2017
-
Python
from math import gcd t = 1 to = 1 i = 1 x = 1 while x < 10000: x = x + 1 y = 0 while y < x: y = y + 1 if gcd(x,y) == 1: t = t + 2 e = t*(x-1)*(x-1) - to*x*x if e < 0: print(i,x) i = i + 1 to = t
Comments