cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A280950 Expansion of Product_{k>=0} 1/(1 - x^(3*k*(k+1)/2+1)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 11, 11, 12, 13, 15, 15, 16, 17, 19, 20, 22, 24, 26, 27, 29, 31, 33, 34, 37, 40, 43, 45, 48, 51, 54, 56, 60, 63, 67, 70, 76, 80, 84, 87, 93, 97, 102, 106, 113, 118, 125, 130, 138, 143, 151, 157, 166, 172, 181, 189, 200, 207, 217, 225, 237, 245, 257, 267, 280
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 11 2017

Keywords

Comments

Number of partitions of n into centered triangular numbers (A005448).

Examples

			a(8) = 3 because we have [4, 4], [4, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    N:= 100:
    kmax:= floor((sqrt(24*N-15)-3)/6):
    S:= series(mul(1/(1-x^(3*k*(k+1)/2+1)),k=0..kmax),x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Jan 25 2017
  • Mathematica
    nmax = 78; CoefficientList[Series[Product[1/(1 - x^(3 k (k + 1)/2 + 1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(3*k*(k+1)/2+1)).

A280952 Expansion of Product_{k>=0} 1/(1 - x^(5*k*(k+1)/2+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 11, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 56, 58, 60, 62, 64, 67, 68, 71, 74, 77, 79, 83, 85, 88, 91, 94, 96, 100
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 11 2017

Keywords

Comments

Number of partitions of n into centered pentagonal numbers (A005891).

Examples

			a(12) = 3 because we have [6, 6], [6, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<0, 0, (t->
          `if`(((t+1)*5*t+2)/2>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(((i+1)*5*i+2)/2)))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 88; CoefficientList[Series[Product[1/(1 - x^(5 k (k + 1)/2 + 1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(5*k*(k+1)/2+1)).

A280953 Expansion of Product_{k>=0} 1/(1 - x^(3*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 22, 23, 24, 25, 25, 27, 27, 29, 30, 31, 32, 32, 34, 34, 36, 37, 38, 39, 40, 43, 44, 46, 47, 48, 50, 51, 54, 55, 57, 58, 59
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 11 2017

Keywords

Comments

Number of partitions of n into centered hexagonal numbers (A003215).

Examples

			a(14) = 3 because we have [7, 7], [7, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<0, 0, (t->
          `if`(3*t*(t+1)+1>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(3*i*(i+1)+1)))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 86; CoefficientList[Series[Product[1/(1 - x^(3 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(3*k*(k+1)+1)).

A281082 Expansion of Product_{k>=0} (1 + x^(2*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 2, 2, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2017

Keywords

Comments

Number of partitions of n into distinct centered square numbers (A001844).

Examples

			a(66) = 2 because we have [61, 5] and [41, 25].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[1 + x^(2 k (k + 1) + 1), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} (1 + x^(2*k*(k+1)+1)).

A282504 Expansion of 1/(1 - Sum_{k>=0} x^(2*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 21, 28, 37, 49, 65, 88, 119, 160, 214, 285, 381, 511, 687, 923, 1237, 1656, 2217, 2971, 3985, 5345, 7166, 9603, 12867, 17244, 23115, 30989, 41543, 55684, 74634, 100032, 134081, 179729, 240919, 322935, 432858, 580191, 777680, 1042407, 1397262, 1872911, 2510457
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 16 2017

Keywords

Comments

Number of compositions (ordered partitions) into centered square numbers (A001844).
Conjecture: every number > 1 is the sum of at most 6 centered square numbers.
Extended conjecture: every number > 1 is the sum of at most k+2 centered k-gonal numbers.

Examples

			a(8) = 5 because we have [5, 1, 1, 1], [1, 5, 1, 1], [1, 1, 5, 1], [1, 1, 1, 5] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - Sum[x^(2 k (k + 1) + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
  • PARI
    Vec(1/(1 - sum(k=0, 54, x^(2*k*(k + 1) + 1))) + O(x^54)) \\ Indranil Ghosh, Mar 15 2017

Formula

G.f.: 1/(1 - Sum_{k>=0} x^(2*k*(k+1)+1)).
a(n) ~ c / r^n, where r = 0.746043978237212782246711857485153004976647... is the root of the equation sqrt(r) * EllipticTheta(2, 0, r^2) = 2 and c = 0.453173429667590077751072798128748901015122665... . - Vaclav Kotesovec, Feb 17 2017

A286934 Number of partitions of n into centered square primes (A027862).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 1, 1, 2, 2, 3, 2, 1, 2, 2, 3, 2, 1, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 4, 2, 3, 3, 4, 4, 3, 3, 4, 4, 4, 3, 3, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, May 16 2017

Keywords

Examples

			a(41) = 2 because we have [41] and [13, 13, 5, 5, 5].
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1 - x^k), {k, Select[Range[nmax]^2 + (Range[nmax] + 1)^2, PrimeQ]}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^A027862(k)).

A332006 Number of compositions (ordered partitions) of n into distinct centered square numbers.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 2, 6, 0, 1, 2, 6, 24, 0, 2, 6, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 6, 24, 1, 2, 0, 0, 0, 4, 12, 0, 0, 0, 6, 24, 0, 2, 6, 0, 0, 0, 12, 48, 0, 0, 0, 24, 121, 4, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Examples

			a(19) = 6 because we have [13, 5, 1], [13, 1, 5], [5, 13, 1], [5, 1, 13], [1, 13, 5] and [1, 5, 13].
		

Crossrefs

Showing 1-7 of 7 results.