cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A280951 Expansion of Product_{k>=0} 1/(1 - x^(2*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 10, 11, 11, 12, 12, 14, 15, 15, 16, 16, 18, 19, 19, 21, 22, 24, 26, 26, 28, 29, 31, 33, 33, 35, 36, 39, 42, 43, 45, 47, 50, 53, 54, 56, 58, 61, 65, 66, 69, 72, 76, 81, 83, 86, 89, 93, 98, 100, 103, 107, 112, 118, 121, 125, 130, 136, 142, 146
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 11 2017

Keywords

Comments

Number of partitions of n into centered square numbers (A001844).

Examples

			a(10) = 3 because we have [5, 5], [5, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 82; CoefficientList[Series[Product[1/(1 - x^(2 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(2*k*(k+1)+1)).

A280952 Expansion of Product_{k>=0} 1/(1 - x^(5*k*(k+1)/2+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 11, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 56, 58, 60, 62, 64, 67, 68, 71, 74, 77, 79, 83, 85, 88, 91, 94, 96, 100
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 11 2017

Keywords

Comments

Number of partitions of n into centered pentagonal numbers (A005891).

Examples

			a(12) = 3 because we have [6, 6], [6, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<0, 0, (t->
          `if`(((t+1)*5*t+2)/2>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(((i+1)*5*i+2)/2)))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 88; CoefficientList[Series[Product[1/(1 - x^(5 k (k + 1)/2 + 1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(5*k*(k+1)/2+1)).

A280953 Expansion of Product_{k>=0} 1/(1 - x^(3*k*(k+1)+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 22, 23, 24, 25, 25, 27, 27, 29, 30, 31, 32, 32, 34, 34, 36, 37, 38, 39, 40, 43, 44, 46, 47, 48, 50, 51, 54, 55, 57, 58, 59
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 11 2017

Keywords

Comments

Number of partitions of n into centered hexagonal numbers (A003215).

Examples

			a(14) = 3 because we have [7, 7], [7, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<0, 0, (t->
          `if`(3*t*(t+1)+1>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(3*i*(i+1)+1)))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 86; CoefficientList[Series[Product[1/(1 - x^(3 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(3*k*(k+1)+1)).

A281081 Expansion of Product_{k>=0} (1 + x^(3*k*(k+1)/2+1)).

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 0, 0, 1, 1, 1, 1, 0, 0, 2, 2, 0, 0, 2, 3, 1, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 3, 1, 0, 0, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2017

Keywords

Comments

Number of partitions of n into distinct centered triangular numbers (A005448).

Examples

			a(46) = 2 because we have [46] and [31, 10, 4, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[1 + x^(3 k (k + 1)/2 + 1), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} (1 + x^(3*k*(k+1)/2+1)).

A282502 Expansion of 1/(1 - Sum_{k>=0} x^(3*k*(k+1)/2+1)).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 15, 21, 29, 40, 57, 81, 114, 159, 223, 315, 445, 626, 879, 1236, 1741, 2452, 3450, 4852, 6826, 9608, 13524, 19032, 26778, 37680, 53027, 74627, 105017, 147776, 207949, 292636, 411813, 579515, 815499, 1147585, 1614917, 2272566, 3198016, 4500318, 6332952, 8911902, 12541080
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 16 2017

Keywords

Comments

Number of compositions (ordered partitions) into centered triangular numbers (A005448).
Conjecture: every number > 1 is the sum of at most 5 centered triangular numbers.

Examples

			a(7) = 5 because we have [4, 1, 1, 1], [1, 4, 1, 1], [1, 1, 4, 1], [1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(3 k (k + 1)/2 + 1), {k, 0, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=0} x^(3*k*(k+1)/2+1)).
a(n) ~ c / r^n, where r = 0.71061790420456638132596657780064392952867377958... is the root of the equation r^(5/8)*EllipticTheta(2, 0, r^(3/2)) = 2 and c = 0.478786567198436133936216342628844283927491282611910379922933700360643... . - Vaclav Kotesovec, Feb 17 2017

A332005 Number of compositions (ordered partitions) of n into distinct centered triangular numbers.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 2, 6, 0, 0, 0, 1, 2, 0, 0, 2, 6, 0, 0, 0, 0, 2, 6, 1, 2, 6, 24, 2, 6, 0, 0, 0, 0, 2, 6, 0, 0, 6, 25, 2, 0, 0, 4, 12, 0, 0, 6, 24, 2, 6, 0, 0, 12, 48, 0, 0, 25, 124, 6, 0, 2, 12, 24, 0, 0, 0, 2, 12, 24, 2, 12, 48, 120, 6, 24, 2, 6, 1, 2, 12
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Examples

			a(15) = 6 because we have [10, 4, 1], [10, 1, 4], [4, 10, 1], [4, 1, 10], [1, 10, 4] and [1, 4, 10].
		

Crossrefs

A334987 Sum of centered triangular numbers dividing n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 1, 1, 20, 15, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 32, 5, 1, 1, 1, 5, 1, 20, 1, 15, 1, 1, 1, 5, 1, 47, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 20, 1, 1, 15, 1, 32, 1, 69, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 24, 1, 1, 1, 15, 1, 1, 1, 5, 86, 1, 1, 5, 1, 11
Offset: 1

Views

Author

Ilya Gutkovskiy, May 18 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(3 k (k - 1)/2 + 1) x^(3 k (k - 1)/2 + 1)/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
  • PARI
    isc(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k));
    a(n) = sumdiv(n, d, if (isc(d), d)); \\ Michel Marcus, May 19 2020

Formula

G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^(3*k*(k - 1)/2 + 1) / (1 - x^(3*k*(k - 1)/2 + 1)).
L.g.f.: log(G(x)), where G(x) is the g.f. for A280950.
Showing 1-7 of 7 results.