A281140 Least k such that k is the product of n distinct primes and sigma(k) is an n-th power.
2, 22, 102, 510, 90510, 995610, 11616990, 130258590, 1483974030, 18404105922510, 428454465915630, 10195374973815570, 240871269907008510, 94467020965716904490370, 4580445736068712946096430, 7027383957579235221501981990, 419420669769073022876839238610, 24967450935148397377034326845390
Offset: 1
Keywords
Examples
a(3) = 102 because 102 = 2 * 3 * 17 and (2 + 1)*(3 + 1)*(17 + 1) = 6^3.
Links
- David A. Corneth, Table of n, a(n) for n = 1..23
- Tristan Freiberg, Products of shifted primes simultaneously taking perfect power values, arXiv:1008.1978 [math.NT], 2010.
Programs
-
PARI
a(n) = my(k=2); while(!issquarefree(k) || !ispower(sigma(k), n) || omega(k)!=n, k++); k \\ Felix Fröhlich, Jan 17 2017
Extensions
a(10)-a(13) from Jinyuan Wang, Nov 08 2020
a(14) from Daniel Suteu and David A. Corneth, Mar 28 2021
a(15)-a(18) from David A. Corneth, Mar 29 2021
Comments