cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281270 a(n) is the number of closed BCK (a.k.a. affine) lambda terms of size n.

Original entry on oeis.org

0, 0, 1, 2, 3, 9, 30, 81, 242, 838, 2799, 9365, 33616, 122937, 449698, 1696724, 6558855, 25559806, 101294687, 409363758, 1673735259, 6928460475, 29115833976, 123835124242, 532449210893, 2317382872404, 10199542298725, 45345006540851, 203704505953902, 924427259637953, 4234544300812834
Offset: 0

Views

Author

Gheorghe Coserea, Apr 02 2017

Keywords

Comments

It appears that for n >= 1, a(n + 5) == a(n) (mod 5), a(n + 38*7) == a(n) (mod 7), a(n + 30*11) == a(n) (mod 11) and a(n + 288*17) == a(n) (mod 17). - Peter Bala, Apr 11 2022

Examples

			A(x) = x^2 + 2*x^3 + 3*x^4 + 9*x^5 + 30*x^6 + 81*x^7 + 242*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 0; a[n_] := a[n] = 1 + a[n - 1] + 2 Sum[ k a[k], {k, 2, n - 3}] + Sum[a[k] a[n - 1 - k], {k, 2, n - 3}]; Table[a@ n, {n, 0, 30}] (* Michael De Vlieger, Apr 02 2017 *)
  • PARI
    seq(N) = {
      my(a = vector(N));
      for (n=2, N, my(s1 = sum(k=2, n-3, k*a[k]));
        a[n] = 1 + a[n-1] + 2*s1 + sum(k=2, n-3, a[k]*a[n-1-k]));
      concat(0,a);
    };
    seq(30)
    \\ test: y = Ser(seq(201)); 0 == 2*x^4*y' + (x-x^2)*y^2 - (1-x)^2*y + x^2

Formula

a(n) = 1 + a(n-1) + 2*Sum_{k=2..n-3} k*a(k) + Sum_{k=2..n-3} a(k)*a(n-1-k) for n>=2.
0 = 2*x^4*y' + (x-x^2)*y^2 - (1-x)^2*y + x^2, where y(x) is the g.f.
a(3*n+1) = Sum_{k=0..n-1} binomial(3*n,3*k+1)*A062980(k).

Extensions

Name clarified by Pierre Lescanne, May 19 2017