cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A284896 Expansion of Product_{k>=1} 1/(1+x^k)^(k^2) in powers of x.

Original entry on oeis.org

1, -1, -3, -6, 0, 11, 42, 63, 73, -45, -267, -720, -1095, -1239, -66, 2794, 8757, 16017, 22885, 19634, -2359, -61979, -161867, -302190, -421971, -432051, -126712, 690578, 2278273, 4584989, 7269985, 8965464, 7515373, -845659, -19930400, -53474765, -100195759
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n^2, g(n) = -1. - Seiichi Manyama, Nov 15 2017

Crossrefs

Product_{k>=1} 1/(1+x^k)^(k^m): A081362 (m=0), A255528 (m=1), this sequence (m=2), A284897 (m=3), A284898 (m=4), A284899 (m=5).

Programs

  • Mathematica
    CoefficientList[Series[Product[1/(1 + x^k)^(k^2) , {k, 40}], {x, 0, 40}], x] (* Indranil Ghosh, Apr 05 2017 *)
  • PARI
    x= 'x + O('x^40); Vec(prod(k=1, 40, 1/(1 + x^k)^(k^2))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A078307(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017
G.f.: exp(Sum_{k>=1} (-1)^k*x^k*(1 + x^k)/(k*(1 - x^k)^3)). - Ilya Gutkovskiy, May 30 2018

A281590 Indices k such that A284896(k-1) and A284896(k) have a different sign.

Original entry on oeis.org

1, 4, 9, 15, 20, 27, 33, 41, 48, 56, 64, 72, 80, 89, 98, 107, 116, 126, 136, 146, 156, 166, 176, 187, 198, 208, 219, 231, 242, 253, 265, 276, 288, 300, 312, 324, 337, 349, 362, 374, 387, 400, 413, 426, 439, 452, 465, 479, 492, 506, 519, 533, 547, 561, 575
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 14 2017

Keywords

Examples

			A284896(8) = 73, A284896(9) = -45, sign is changed, so 9 is in the sequence.
A284896(14) = -66, A284896(15) = 2794, sign is changed, so 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    nmax = 1000; A284896 = Rest[CoefficientList[Series[Product[1/(1 + x^k)^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]]; csign = {1}; Do[If[(A284896[[n]] < 0 && A284896[[n+1]] >= 0) || (A284896[[n]] >= 0 && A284896[[n+1]] < 0), csign = Flatten[{csign, n + 1}]], {n, 1, Length[A284896] - 1}]; csign
Showing 1-2 of 2 results.