cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281620 Triangle read by rows: Poincaré polynomials of orbifold of Fermat hypersurfaces.

Original entry on oeis.org

1, 7, 1, 67, 13, 1, 821, 181, 21, 1, 12281, 2906, 406, 31, 1, 217015, 53719, 8359, 799, 43, 1, 4424071, 1129899, 188707, 20637, 1429, 57, 1, 102207817, 26710345, 4690249, 561481, 45385, 2377, 73, 1, 2639010709, 701908264, 127951984, 16349374, 1469026, 91216, 3736, 91, 1
Offset: 2

Views

Author

F. Chapoton, Jan 25 2017

Keywords

Examples

			The first few polynomials are 1; q + 7; q^2 + 13*q + 67; ...
Triangle begins:
        1;
        7,       1;
       67,      13,      1;
      821,     181,     21,     1;
    12281,    2906,    406,    31,    1;
   217015,   53719,   8359,   799,   43,  1;
  4424071, 1129899, 188707, 20637, 1429, 57, 1;
  ...
		

Crossrefs

Row sums give A007778(n-1), alternating row sums are A281596.

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, q, i), i=0..n-2))(add(add(n^j*
             binomial(n, j)*(-1)^(i+n+j)*binomial(n-2-j+1, i+1)*
             q^i, i=0..n-1-j), j=0..n-1)):
    seq(T(n), n=2..10);  # Alois P. Heinz, Jan 25 2017
    # Alternatively:
    t := n -> factor(((-n-x+1)^n+(x-1)*(1-n)^n-(-n)^n*x)*(-1)^n/((x-1)*x)):
    seq(seq(coeff(t(n),x,k),k=0..n-2),n=2..10); # Peter Luschny, Jan 26 2017
  • Mathematica
    T[n_] := ((-n-x+1)^n+(x-1)(1-n)^n-(-n)^n x) (-1)^n/((x-1) x); Table[CoefficientList[T[n],x],{n,2,10}] // Flatten (* Peter Luschny, Jan 26 2017 *)
  • Sage
    def fermat(n):
        q = polygen(ZZ, 'q')
        return sum(n**j * binomial(n, j) * (-1)**(i + n + j) *
                   binomial(n - 2 - j + 1, i + 1) * q**i
                   for j in range(n - 1)
                   for i in range(n - 1 - j))
    
  • Sage
    # Alternatively:
    def A281620_row(n):
        x = polygen(ZZ, 'x')
        p = (((-n-x+1)^n + (x-1)*(1-n)^n - (-n)^n*x)*(-1)^n)//((x-1)*x)
        return p.list()
    for n in (2..10): print(A281620_row(n)) # Peter Luschny, Jan 26 2017

Formula

The formula given by Okada needs to be corrected as follows:
Sum_{j=0..n-1} Sum_{i=0..n-1-j} n^j * binomial(n,j) * (-1)^(i+n+j) * binomial(n-2-j+1,i+1) * q^i.
From Peter Luschny, Jan 26 2017: (Start)
T(n,k) = [x^k] Sum_{j=0..n-1} t(j, n) for n>=2 and 0<=k<=n-2 with t(j,n) = (-1)^(j+n)*binomial(n,j)*(1-(1-x)^(n-1-j))*x^(-1)*n^j.
T(n,k) = [x^k] ((-n-x+1)^n+(x-1)*(1-n)^n-(-n)^n*x)*(-1)^n/((x-1)*x). (End)