A281620 Triangle read by rows: Poincaré polynomials of orbifold of Fermat hypersurfaces.
1, 7, 1, 67, 13, 1, 821, 181, 21, 1, 12281, 2906, 406, 31, 1, 217015, 53719, 8359, 799, 43, 1, 4424071, 1129899, 188707, 20637, 1429, 57, 1, 102207817, 26710345, 4690249, 561481, 45385, 2377, 73, 1, 2639010709, 701908264, 127951984, 16349374, 1469026, 91216, 3736, 91, 1
Offset: 2
Examples
The first few polynomials are 1; q + 7; q^2 + 13*q + 67; ... Triangle begins: 1; 7, 1; 67, 13, 1; 821, 181, 21, 1; 12281, 2906, 406, 31, 1; 217015, 53719, 8359, 799, 43, 1; 4424071, 1129899, 188707, 20637, 1429, 57, 1; ...
Links
- So Okada, Homological mirror symmetry of Fermat polynomials, arxiv:0910.2014 [math.AG], 2009-2010.
Programs
-
Maple
T:= n-> (p-> seq(coeff(p, q, i), i=0..n-2))(add(add(n^j* binomial(n, j)*(-1)^(i+n+j)*binomial(n-2-j+1, i+1)* q^i, i=0..n-1-j), j=0..n-1)): seq(T(n), n=2..10); # Alois P. Heinz, Jan 25 2017 # Alternatively: t := n -> factor(((-n-x+1)^n+(x-1)*(1-n)^n-(-n)^n*x)*(-1)^n/((x-1)*x)): seq(seq(coeff(t(n),x,k),k=0..n-2),n=2..10); # Peter Luschny, Jan 26 2017
-
Mathematica
T[n_] := ((-n-x+1)^n+(x-1)(1-n)^n-(-n)^n x) (-1)^n/((x-1) x); Table[CoefficientList[T[n],x],{n,2,10}] // Flatten (* Peter Luschny, Jan 26 2017 *)
-
Sage
def fermat(n): q = polygen(ZZ, 'q') return sum(n**j * binomial(n, j) * (-1)**(i + n + j) * binomial(n - 2 - j + 1, i + 1) * q**i for j in range(n - 1) for i in range(n - 1 - j))
-
Sage
# Alternatively: def A281620_row(n): x = polygen(ZZ, 'x') p = (((-n-x+1)^n + (x-1)*(1-n)^n - (-n)^n*x)*(-1)^n)//((x-1)*x) return p.list() for n in (2..10): print(A281620_row(n)) # Peter Luschny, Jan 26 2017
Formula
The formula given by Okada needs to be corrected as follows:
Sum_{j=0..n-1} Sum_{i=0..n-1-j} n^j * binomial(n,j) * (-1)^(i+n+j) * binomial(n-2-j+1,i+1) * q^i.
From Peter Luschny, Jan 26 2017: (Start)
T(n,k) = [x^k] Sum_{j=0..n-1} t(j, n) for n>=2 and 0<=k<=n-2 with t(j,n) = (-1)^(j+n)*binomial(n,j)*(1-(1-x)^(n-1-j))*x^(-1)*n^j.
T(n,k) = [x^k] ((-n-x+1)^n+(x-1)*(1-n)^n-(-n)^n*x)*(-1)^n/((x-1)*x). (End)