A281627 a(n) is the smallest number k such that sigma(phi(k)) = A062402(k) is the n-th Mersenne prime (A000668(n)), or 0 if no such k exists.
3, 5, 17, 85, 4369, 65537, 327685, 1431655765, 2305843009213693952, 618970019642690137449562112, 162259276829213363391578010288128, 170141183460469231731687303715884105728
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..13
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
Crossrefs
Programs
-
Magma
A281627:=func
; Set(Sort([A281627(n): n in [SumOfDivisors(EulerPhi(n)): n in[1..1000000] | IsPrime(SumOfDivisors(EulerPhi(n)))]])); -
PARI
terms() = {v = readvec("b023194.txt"); for(i=1, #v, if (istotient(v[i], &n), print1(n/2, ", ")););} \\ Michel Marcus, Feb 12 2017
-
PARI
f(p) = {my(s = invsigma(p), t, minv = 0); for(i = 1 ,#s, t = invphi(s[i]); for(j = 1, #t, if(minv == 0, minv = t[j]); if(t[j] < minv, minv = t[j]))); minv;} \\ using Max Alekseyev's invphi.gp list(pmax) = forprime(p = 1, pmax, if(isprime(2^p-1), print1(f(2^p-1), ", "))); \\ Amiram Eldar, Dec 23 2024
Extensions
a(8) from Michel Marcus, Feb 12 2017
a(9)-a(12) from Amiram Eldar, Dec 23 2024
Comments