A281707 Even integers k such that phi(sum of even divisors of k) = sum of odd divisors of k.
2, 6, 14, 42, 62, 186, 254, 434, 762, 1302, 1778, 5334, 7874, 16382, 23622, 49146, 55118, 114674, 165354, 262142, 344022, 507842, 786426, 1048574, 1523526, 1834994, 2080514, 3145722, 3554894, 5504982, 6241542, 7340018, 8126402, 10664682, 14563598, 22020054
Offset: 1
Keywords
Examples
62 is a term because its divisors are 1, 2, 31 and 62, the sum of the even divisors of 62 = 62 + 2 = 2^6, the sum of odd divisors = 1 + 31 = 2^5, and phi(2^6) = 2^5.
Programs
-
Maple
with(numtheory): for n from 2 by 2 to 10^6 do: x:=divisors(n):n1:=nops(x):s0:=0:s1:=0: for k from 1 to n1 do: if irem(x[k],2)=0 then s0:=s0+ x[k]: else s1:=s1+ x[k]: fi: od: if s1=phi(s0) then print(n): else fi: od:
-
Mathematica
Select[2 * Range[10^6], (sodd = (s = DivisorSigma[1, #])/(2^(IntegerExponent[#, 2]+1) - 1)) == EulerPhi[s - sodd] &] (* Amiram Eldar, Aug 12 2023 *)
-
PARI
isok(n) = eulerphi(sumdiv(n, d, d*((d % 2)==0))) == sumdiv(n, d, d*(d%2)); \\ Michel Marcus, Jan 28 2017
Extensions
a(1) inserted by Amiram Eldar, Aug 12 2023
Comments