cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281708 a(n) = (Sum_{k=1..n} k^3 * p(k) * p(n-k)) * 2/n where p = A000041.

Original entry on oeis.org

2, 17, 66, 218, 564, 1407, 3074, 6536, 12960, 24991, 46028, 83166, 145182, 249151, 417432, 688742, 1114978, 1782228, 2804886, 4365560, 6709074, 10208894, 15368870, 22937184, 33916388, 49763175, 72429396, 104685554, 150234266, 214249998, 303606838, 427780502
Offset: 1

Views

Author

Michael Somos, Jan 28 2017

Keywords

Comments

See A067567 for a conjecture about this sequence from Peter Bala.

Examples

			G.f. = 2*x + 17*x^2 + 66*x^3 + 218*x^4 + 564*x^5 + 1407*x^6 + 3074*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= (2/n)*Sum[k^3*PartitionsP[k]*PartitionsP[n-k], {k,1,n}]; Table[a[n], {n,1,50}] (* G. C. Greubel, Jul 29 2018 *)
  • PARI
    {a(n) = if( n<1, 0, sum(k=1, n, k^3 * numbpart(k) * numbpart(n-k)) * 2 / n)};