A281747 Smallest b > 1 such that p = prime(n) satisfies b^(p-1) == 1 (mod p^p).
5, 26, 1068, 82681, 5392282366, 11356596271444, 34451905517028761171, 340625514346676110671584, 308318432223607315018221180590, 8566187045843934976180705488213013173127, 1099862052702774330481800364074681495062836757, 8170421001593885871548404108552563632485969048059688187
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..76
- W. Keller and J. Richstein, Solutions of the congruence a^(p-1) == 1 (mod p^r), Math. Comp. 74 (2005), 927-936.
Crossrefs
Cf. A257833.
Programs
-
Maple
f:= proc(p) local c,j; c:= numtheory:-primroot(p^p); min(seq(c &^ (j*p^(p-1)) mod p^p, j=1..p-2)) end proc: 5, seq(f(ithprime(i)),i=2..15); # Robert Israel, Jan 30 2017
-
Mathematica
Table[b = 2; While[PowerMod[b, (# - 1), #^#] &@ Prime@ n != 1, b++]; b, {n, 4}] (* Michael De Vlieger, Jan 30 2017 *)
-
PARI
a(n) = my(p=prime(n), b=2); while(Mod(b, p^p)^(p-1)!=1, b++); b
Extensions
More terms from Robert Israel, Jan 30 2017
Comments