A281773
Number of distinct topologies on an n-set that have exactly 4 open sets.
Original entry on oeis.org
0, 0, 1, 9, 43, 165, 571, 1869, 5923, 18405, 56491, 172029, 521203, 1573845, 4742011, 14266989, 42882883, 128812485, 386765131, 1160950749, 3484162963, 10455110325, 31370573851, 94122207309, 282387593443, 847204723365, 2541698056171, 7625261940669
Offset: 0
a(3) = 9 because we have: {{}, {c}, {a,b}, {a,b,c}} with 3 labelings and {{}, {c}, {b,c}, {a,b,c}} with 6 labelings.
The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by
A000012,
A000918,
A281773,
A028244,
A281774,
A281775,
A281776,
A281777,
A281778,
A281779,
A281780.
-
CoefficientList[Series[x^2*(1 + 3 x)/((1 - x) (1 - 2 x) (1 - 3 x)), {x, 0, 27}], x] (* Michael De Vlieger, Jan 21 2018 *)
-
a(n) = stirling(n,2,2) + 3!*stirling(n,3,2) \\ Colin Barker, Jan 30 2017
-
concat(vector(2), Vec(x^2*(1 + 3*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30))) \\ Colin Barker, Jan 30 2017
A281774
Number of distinct topologies on an n-set with exactly 6 open sets.
Original entry on oeis.org
0, 0, 0, 6, 72, 630, 4680, 31206, 193032, 1131990, 6386760, 35025606, 188061192, 993760950, 5187840840, 26831095206, 137770476552, 703455087510, 3576115150920, 18117222864006, 91536570671112, 461496288791670, 2322770028381000, 11675109032796006
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- Index entries for linear recurrences with constant coefficients, signature (15,-85,225,-274,120).
The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by
A000012,
A000918,
A281773,
A028244,
A281774,
A281775,
A281776,
A281777,
A281778,
A281779,
A281780.
-
LinearRecurrence[{15,-85,225,-274,120},{0,0,0,6,72,630},30] (* Harvey P. Dale, Oct 22 2018 *)
-
a(n) = 3!*stirling(n, 3, 2) + 3*4!*stirling(n, 4, 2)/2 + 5!*stirling(n, 5, 2) \\ Colin Barker, Jan 30 2017
-
concat(vector(3), Vec(6*x^3*(1 - 3*x + 10*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)) + O(x^30))) \\ Colin Barker, Jan 30 2017
A281775
Number of distinct topologies on an n-set that have exactly 7 open sets.
Original entry on oeis.org
0, 0, 0, 0, 54, 780, 7830, 67620, 535374, 3992940, 28483110, 196316340, 1317106494, 8650141500, 55853351190, 355770438660, 2241509994414, 13998294536460, 86795899256070, 535048203626580, 3282628800655134, 20061393719417820, 122212221633141750
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by
A000012,
A000918,
A281773,
A281774,
A028244,
A281775,
A281776,
A281777,
A281778,
A281779,
A281780.
-
a(n) = 9*4!*stirling(n, 4, 2)/4 + 2*5!*stirling(n, 5, 2) + 6!*stirling(n, 6, 2) \\ Colin Barker, Jan 30 2017
-
concat(vector(4), Vec(6*x^4*(9 - 59*x + 150*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)) + O(x^30))) \\ Colin Barker, Jan 30 2017
A281776
Number of distinct topologies on an n-set that have exactly 8 open sets.
Original entry on oeis.org
0, 0, 0, 1, 54, 955, 11760, 122941, 1175034, 10595215, 91506420, 763624081, 6194818014, 49084747075, 381338401080, 2914184784421, 21965095364994, 163656285828535, 1207613518375740, 8838842878371961, 64253768864671974, 464416229729871595, 3340518964319750400
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- Index entries for linear recurrences with constant coefficients, signature (28,-322,1960,-6769,13132,-13068,5040).
The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by
A000012,
A000918,
A281773,
A028244,
A281774,
A281775,
A281776,
A281777,
A281778,
A281779,
A281780.
A281777
Number of distinct topologies on an n-set that have exactly 9 open sets.
Original entry on oeis.org
0, 0, 0, 0, 20, 800, 14260, 189280, 2181060, 23241120, 235737620, 2308206560, 21979728100, 204477713440, 1864504348980, 16707856095840, 147469451067140, 1284607771225760, 11063319237792340, 94343562846289120, 797685042851814180, 6694943490279586080
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- Index entries for linear recurrences with constant coefficients, signature (36,-546,4536,-22449,67284,-118124,109584,-40320).
The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by
A000012,
A000918,
A281773,
A028244,
A281774,
A281775,
A281776,
A281777,
A281778,
A281779,
A281780.
-
LinearRecurrence[{36,-546,4536,-22449,67284,-118124,109584,-40320},{0,0,0,0,20,800,14260,189280,2181060},30] (* Harvey P. Dale, Aug 19 2020 *)
-
concat(vector(4), Vec(20*x^4*(1 + 4*x - 181*x^2 + 1100*x^3 - 1344*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 8*x)) + O(x^30))) \\ Colin Barker, Jan 30 2017
A281778
Number of distinct topologies on an n-set that have exactly 10 open sets.
Original entry on oeis.org
0, 0, 0, 0, 24, 900, 18030, 276570, 3680964, 45065160, 523292010, 5859909990, 63862084704, 680829769620, 7122705252390, 73284607133010, 742843170653244, 7429450873589280, 73416173732059170, 717721593866613630, 6949589106333898584, 66721599431782204140
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- Index entries for linear recurrences with constant coefficients, signature (45,-870,9450,-63273,269325,-723680,1172700,-1026576,362880).
The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by
A000012,
A000918,
A281773,
A028244,
A281774,
A281775,
A281776,
A281777,
A281778,
A281779,
A281780.
-
concat(vector(4), Vec(6*x^4*(4 - 30*x - 265*x^2 + 3570*x^3 - 10839*x^4 + 22680*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 8*x)*(1 - 9*x)) + O(x^30))) \\ Colin Barker, Jan 30 2017
A281780
Number of distinct topologies on an n-set that have exactly 12 open sets.
Original entry on oeis.org
0, 0, 0, 0, 12, 660, 20400, 445620, 7977732, 126860580, 1873839000, 26381789940, 359484471852, 4784481401700, 62538498859200, 805447464281460, 10241415118476372, 128722997969290020, 1600670708273985000, 19705915838479512180, 240330009637668935292
Offset: 0
- Ray Chandler, Table of n, a(n) for n = 0..960
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- Index entries for linear recurrences with constant coefficients, signature (66, -1925, 32670, -357423, 2637558, -13339535, 45995730, -105258076, 150917976, -120543840, 39916800).
The number of distinct topologies on an n-set with exactly k open sets for k=2..12 is given by
A000012,
A000918,
A281773,
A028244,
A281774,
A281775,
A281776,
A281777,
A281778,
A281779,
A281780.
Showing 1-7 of 7 results.