A281809 Expansion of Sum_{i>=1} x^(i^3) / (1 - Sum_{j>=1} x^(j^3))^2.
1, 2, 3, 4, 5, 6, 7, 9, 13, 19, 27, 37, 49, 63, 79, 99, 126, 163, 213, 279, 364, 471, 603, 766, 970, 1229, 1562, 1992, 2545, 3251, 4144, 5266, 6672, 8435, 10655, 13462, 17019, 21527, 27230, 34425, 43478, 54846, 69114, 87032, 109555, 137889, 173543, 218393, 274765, 345544, 434332, 545650, 685187, 860105, 1079402
Offset: 1
Keywords
Examples
a(10) = 19 because we have [8, 1, 1], [1, 8, 1], [1, 1, 8], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and 3 + 3 + 3 + 10 = 19.
Links
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, [1, 0], add( (p-> p+[0, p[1]])(b(n-j^3)), j=1..iroot(n, 3))) end: a:= n-> b(n)[2]: seq(a(n), n=1..55); # Alois P. Heinz, Aug 07 2019
-
Mathematica
nmax = 55; Rest[CoefficientList[Series[Sum[x^i^3, {i, 1, nmax}]/(1 - Sum[x^j^3, {j, 1, nmax}])^2, {x, 0, nmax}], x]]
Formula
G.f.: Sum_{i>=1} x^(i^3) / (1 - Sum_{j>=1} x^(j^3))^2.
Comments