cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281811 Expansion of Sum_{i>=0} x^(2^i) / (1 - Sum_{j>=0} x^(2^j))^2.

Original entry on oeis.org

1, 3, 7, 16, 34, 71, 143, 286, 562, 1096, 2114, 4054, 7720, 14631, 27591, 51834, 97018, 181030, 336810, 625062, 1157288, 2138200, 3942858, 7257830, 13338024, 24474978, 44848232, 82073852, 150016328, 273893503, 499534495, 910161570, 1656786466, 3013237398, 5475710770, 9942780954, 18040712384, 32711070838
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 30 2017

Keywords

Comments

Total number of parts in all compositions (ordered partitions) of n into powers of 2 (A000079).

Examples

			a(4) = 16 because we have [4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1] and 1 + 2 + 3 + 3 + 3 + 4 = 16.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1, 0], add(
          (p-> p+[0, p[1]])(b(n-2^j)), j=0..ilog2(n)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=1..55);  # Alois P. Heinz, Aug 07 2019
  • Mathematica
    nmax = 38; Rest[CoefficientList[Series[Sum[x^2^i, {i, 0, nmax}]/(1 - Sum[x^2^j, {j, 0, nmax}])^2, {x, 0, nmax}], x]]
    nmax = 40; Rest[CoefficientList[Series[Sum[x^(2^i), {i, 0, Floor[Log[nmax]/Log[2]] + 1}]/(1 - Sum[x^(2^j), {j, 0, Floor[Log[nmax]/Log[2]] + 1}])^2, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Feb 17 2017 *)

Formula

G.f.: Sum_{i>=0} x^(2^i) / (1 - Sum_{j>=0} x^(2^j))^2.
a(n) ~ c * n / r^n, where r = 0.566123792684559918241681653033264449147... is the root of the equation Sum_{j>=0} r^(2^j) = 1 and c = 0.34432689951558638915900387175922521737229978512101795819134... . - Vaclav Kotesovec, Feb 17 2017