cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281919 8th-power analog of Keith numbers.

Original entry on oeis.org

1, 30, 46, 54, 63, 207, 394, 693, 694, 718, 20196, 42664, 80051, 90135, 91447, 93136, 207846, 324121, 361401, 421609, 797607, 802702, 882227, 1531788, 1788757, 1789643, 4028916, 4176711, 6692664, 15643794, 31794346, 65335545, 140005632, 144311385, 153364253
Offset: 1

Views

Author

Paolo P. Lava, Feb 02 2017

Keywords

Comments

Like Keith numbers but starting from n^8 digits to reach n.
Consider the digits of n^8. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some number of iterations reach a sum equal to n.

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);
    for n from 1 to q do b:=n^w; a:=[];
    for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
    for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;
    t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    (* function keithQ[ ] is defined in A007629 *)
    a281919[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 8]&]]
    a281919[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)

Formula

207^8 = 3371031134626313601:
3 + 3 + 7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 = 54;
3 + 7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 + 54 = 105;
7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 + 54 + 105 = 207.

Extensions

a(32) from Jinyuan Wang, Feb 01 2020
Terms a(33) and beyond from Giovanni Resta, Feb 03 2020