A281919 8th-power analog of Keith numbers.
1, 30, 46, 54, 63, 207, 394, 693, 694, 718, 20196, 42664, 80051, 90135, 91447, 93136, 207846, 324121, 361401, 421609, 797607, 802702, 882227, 1531788, 1788757, 1789643, 4028916, 4176711, 6692664, 15643794, 31794346, 65335545, 140005632, 144311385, 153364253
Offset: 1
Links
- Giovanni Resta, Table of n, a(n) for n = 1..40
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h); for n from 1 to q do b:=n^w; a:=[]; for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od; for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1; t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
(* function keithQ[ ] is defined in A007629 *) a281919[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 8]&]] a281919[10^6] (* Hartmut F. W. Hoft, Jun 03 2021 *)
Formula
207^8 = 3371031134626313601:
3 + 3 + 7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 = 54;
3 + 7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 + 54 = 105;
7 + 1 + 0 + 3 + 1 + 1 + 3 + 4 + 6 + 2 + 6 + 3 + 1 + 3 + 6 + 0 + 1 + 54 + 105 = 207.
Extensions
a(32) from Jinyuan Wang, Feb 01 2020
Terms a(33) and beyond from Giovanni Resta, Feb 03 2020
Comments