cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A279892 Eisenstein series E_18(q) (alternate convention E_9(q)), multiplied by 43867.

Original entry on oeis.org

43867, -28728, -3765465144, -3709938631392, -493547047383096, -21917724609403728, -486272786232443616, -6683009405824511424, -64690198594597187640, -479102079577959825624, -2872821917728374840144, -14520482234727711482016, -63736746640768788267744
Offset: 0

Views

Author

Seiichi Manyama, Dec 22 2016

Keywords

References

  • J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (691*E_12), A058550 (E_14), A029829 (3617*E_16), this sequence (43867*E_18), A029830 (174611*E_20), A279893 (77683*E_22), A029831 (236364091*E_24).
Cf. A282000 (E_4^3*E_6), A282253 (E_6^3).

Programs

  • Mathematica
    terms = 13;
    E18[x_] = 43867 - 28728*Sum[k^17*x^k/(1 - x^k), {k, 1, terms}];
    E18[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

G.f.: 43867 - 28728 * Sum_{i>=1} sigma_17(i)q^i where sigma_17(n) is A013965.
a(n) = 38367*A282000(n) + 5500*A282253(n). - Seiichi Manyama, Feb 11 2017

A282047 Coefficients in q-expansion of E_4^4*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, 456, -146232, -133082976, -32170154808, -3378441902544, -155862776255328, -3969266446940352, -65538944782146360, -777506848190979672, -7105808014591457232, -52584752452485047328, -326903300701760852832, -1755591608260377411216
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 208.

Crossrefs

Cf. A004009 (E_4), A013973 (E_6), A013974 (E_4*E_6 = E_10), A058550 (E_4^2*E_6 = E_14), A282000 (E_4^3*E_6), this sequence (E_4^4*E_6), A282048 (E_4^5*E_6).

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^4*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)

Formula

-552 * A013969(n) = 77683 * a(n) - 35424000 * A037946(n) for n > 0.

A282048 Coefficients in q-expansion of E_4^5*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, 696, -34632, -167186976, -64422848328, -11387712944304, -1037073232984608, -48892286706157632, -1378097272692189000, -26188038166214133672, -364779879415169299632, -3952277018332870144608, -34798618196377082329632, -257403706082325167732976
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 208.

Crossrefs

Cf. A004009 (E_4), A013973 (E_6), A013974 (E_4*E_6 = E_10), A058550 (E_4^2*E_6 = E_14), A282000 (E_4^3*E_6), A282047 (E_4^4*E_6), this sequence (E_4^5*E_6).

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^5*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

Formula

-24 * A281959(n) = 657931 * a(n) - 457920000 * A037947(n) for n > 0.

A282382 Coefficients in q-expansion of E_4^6*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, 936, 134568, -173988576, -104617833048, -27210540914064, -3910401774129888, -322823174243838912, -15429983442476298840, -469709326015243815672, -9973673112569954220432, -158215072218253260221088, -1972939697011615168926432
Offset: 0

Views

Author

Seiichi Manyama, Feb 16 2017

Keywords

Crossrefs

Cf. A004009 (E_4), A013973 (E_6), A013974 (E_4*E_6 = E_10), A058550 (E_4^2*E_6 = E_14), A282000 (E_4^3*E_6), A282047 (E_4^4*E_6), A282048 (E_4^5*E_6), this sequence (E_4^6*E_6).

Programs

  • Mathematica
    terms = 13;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^6*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282777 Expansion of phi_{16, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 65538, 43046724, 4295098372, 152587890630, 2821196197512, 33232930569608, 281483566907400, 1853020317992013, 10000305176108940, 45949729863572172, 184889914172333328, 665416609183179854, 2178019803670969104, 6568408813691796120
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Comments

Multiplicative because A013963 is. - Andrew Howroyd, Jul 25 2018

References

  • George E. Andrews and Bruce C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012. See p. 212.

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), A282548 (phi_{12, 1}), A282597 (phi_{14, 1}), this sequence (phi_{16, 1}).
Cf. A282546 (E_2*E_4^4), A282000 (E_4^3*E_6), A282547 (E_2*E_4*E_6^2), A282253 (E_6^3).
Cf. A013674.

Programs

  • Mathematica
    Table[If[n==0, 0, n * DivisorSigma[15, n]], {n, 0, 15}] (* Indranil Ghosh, Mar 11 2017 *)
  • PARI
    for(n=0, 15, print1(if(n==0, 0, n * sigma(n, 15)), ", ")) \\ Indranil Ghosh, Mar 11 2017

Formula

a(n) = n*A013963(n) for n > 0.
a(n) = (2156*A282546(n) - 4156*A282000(n) + 8000*A282547(n)/3 - 2000*A282253(n)/3)/16320.
Sum_{k=1..n} a(k) ~ zeta(16) * n^17 / 17. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(15*e+15)-1)/(p^15-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-16). (End)
Showing 1-5 of 5 results.