A282213 Coefficients in q-expansion of (E_2^3*E_4 - 3*E_2^2*E_6 + 3*E_2*E_4^2 - E_4*E_6)/3456, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
0, 1, 72, 756, 4672, 15750, 54432, 117992, 299520, 551853, 1134000, 1772892, 3532032, 4829006, 8495424, 11907000, 19173376, 24142482, 39733416, 47052740, 73584000, 89201952, 127648224, 148048056, 226437120, 246109375, 347688432, 402320520, 551258624, 594847710
Offset: 0
Examples
a(6) = 1^6*6^3 + 2^6*3^3 + 3^6*2^3 + 6^6*1^3 = 54432.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A282211 (phi_{4, 3}), this sequence (phi_{6, 3}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282586 (E_2^3*E_4), A282595 (E_2^2*E_6), A282101 (E_2*E_4^2), A013974 (E_4*E_6 = E_10).
Cf. A001158 (sigma_3(n)), A281372 (n*sigma_3(n)), A282099 (n^2*sigma_3(n)), this sequence (n^3*sigma_3(n))
Cf. A013662.
Programs
-
Mathematica
terms = 30; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; (E2[x]^3*E4[x] - 3 E2[x]^2*E6[x] + 3 E2[x] E4[x]^2 - E4[x] E6[x])/3456 + O[x]^terms // CoefficientList[#, x]& (* or: *) Table[n^3*DivisorSigma[3, n], {n, 0, terms-1}] (* Jean-François Alcover, Feb 27 2018 *) nmax = 30; CoefficientList[Series[Sum[k^6*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
-
PARI
a(n) = if (n, n^3*sigma(n, 3), 0); \\ Michel Marcus, Feb 27 2018
Formula
G.f.: phi_{6, 3}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = n^3*A001158(n) for n > 0. - Seiichi Manyama, Feb 19 2017
Sum_{k=1..n} a(k) ~ zeta(4) * n^7 / 7. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(3*e) * (p^(3*e+3)-1)/(p^3-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-6). (End)
G.f.: Sum_{k>=1} k^6*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4. - Vaclav Kotesovec, Aug 02 2025
Comments