cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282290 Expansion of (Sum_{p prime, i>=2} x^(p^i))*(Sum_{j>=2} mu(j)^2*x^j), where mu() is the Moebius function (A008683).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 4, 1, 3, 3, 4, 1, 2, 3, 4, 2, 3, 6, 4, 3, 3, 4, 5, 1, 5, 7, 6, 3, 3, 7, 4, 3, 4, 7, 6, 3, 4, 5, 7, 2, 3, 5, 7, 4, 3, 4, 5, 4, 4, 7, 6, 4, 4, 8, 6, 4, 6, 7, 7, 2, 5, 7, 7, 2, 4, 9, 5, 4, 4, 7, 8, 4, 5, 9, 9, 4, 4, 7, 7, 5, 6, 8, 8, 5, 5, 8, 6, 4, 6, 8, 7, 5, 6, 6, 6, 2, 5, 10
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 11 2017

Keywords

Comments

Number of ways of writing n as a sum of a proper prime power (A246547) and a squarefree number > 1 (A144338).
Conjecture: a(n) > 0 for all n > 8.

Examples

			a(19) = 4 because we have [16, 3], [15, 4], [11, 8] and [10, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 110; CoefficientList[Series[Sum[Sign[PrimeOmega[i] - 1] Floor[1/PrimeNu[i]] x^i, {i, 2, nmax}] Sum[MoebiusMu[j]^2 x^j, {j, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: (Sum_{p prime, i>=2} x^(p^i))*(Sum_{j>=2} mu(j)^2*x^j).