A282323 Lesser of twin primes congruent to 17 (mod 30).
17, 107, 137, 197, 227, 347, 617, 827, 857, 1277, 1427, 1487, 1607, 1667, 1697, 1787, 1877, 1997, 2027, 2087, 2237, 2267, 2657, 2687, 3167, 3257, 3467, 3527, 3557, 3767, 3917, 4127, 4157, 4217, 4337, 4517, 4547, 4637, 4787, 4967, 5417, 5477, 5657, 5867, 6197
Offset: 1
Keywords
Examples
From _Muniru A Asiru_, Jan 25 2018: (Start) 17 is a member because the pair (17, 19) is a twin prime, 17 < 19 and 17 mod 30 = 17. 137 is a member because the pair (137, 139) is a twin prime, 137 < 139 and 137 mod 30 = 17. 197 is a member because the pair (197, 199) is a twin prime, 197 < 199 and 197 mod 30 = 17. (End)
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..3000
Crossrefs
Programs
-
GAP
P:=Filtered([1..400000], IsPrime);; P1:=List(Filtered(Filtered(List([1..Length(P)-1],n->[P[n],P[n+1]]),i->i[2]-i[1]=2),j->j[1] mod 30=17),k->k[1]);; # Muniru A Asiru, Jul 08 2017
-
Magma
[p: p in PrimesUpTo(7000) | IsPrime(p+2) and p mod 30 eq 17 ]; // Vincenzo Librandi, Feb 13 2017
-
Maple
a:={}: for i from 1 to 1229 do if isprime(ithprime(i)+2) and ithprime(i) mod 30 = 17 then a:={op(a),ithprime(i)}: fi: od: a;
-
Mathematica
Select[17 + 30 Range[0, 220], PrimeQ[#] && PrimeQ[# + 2] &] (* Robert G. Wilson v, Jan 09 2018 *) Select[Partition[Prime[Range[1000]],2,1],#[[2]]-#[[1]]==2&&Mod[#[[1]],30]==17&][[;;,1]] (* or *) Select[Range[17,7000,30],AllTrue[#+{0,2},PrimeQ]&] (* Harvey P. Dale, Mar 02 2024 *)
-
PARI
list(lim)=my(v=List(), p=2); forprime(q=3, lim+2, if(q-p==2 && q%30==19, listput(v, p)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017
Comments