A282515 Numbers m such that phi(sum of the divisors of m) = phi(sum of the distinct prime divisors of m) where phi is the Euler totient function.
3, 6, 10, 22, 34, 142, 178, 214, 382, 862, 1402, 2302, 5182, 9098, 15398, 17398, 21178, 23602, 279934, 289558, 296734, 368062, 900754, 944782, 1079374, 1563442, 1572862, 1990654, 2116342, 2505886, 2584882, 2691574, 2858698, 2883058, 3351214, 3909046
Offset: 1
Keywords
Examples
34 is in the sequence because A000010(A000203(34)) = A000010(54) = 18 and A000010(A008472(34)) = A000010(19) = 18.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..289 (terms below 10^10)
Programs
-
Maple
with(numtheory): for n from 2 to 200000 do: x:=divisors(n):n0:=nops(x):y:=factorset(n):n1:=nops(y): s0:=sum(‘x[i]’, ‘i’=1..n0):s1:=sum(‘y[i]’, ‘i’=1..n1): if phi(s1)=phi(s0) then print(n): else fi: od:
-
Mathematica
Select[Range[10^6], EulerPhi@ DivisorSigma[1, #] == EulerPhi[Total@ FactorInteger[#][[All, 1]]] &] (* Michael De Vlieger, Feb 17 2017 *)
-
PARI
isok(n) = my(f=factor(n)); eulerphi(sigma(n)) == eulerphi(vecsum(f[,1])); \\ Michel Marcus, Feb 25 2017
Comments