A282575 Triangular array read by rows. T(n,k) is the number of minimal covers of an n-set with exactly k points that are in more than one set of the cover, n>=0, 0<=k<=max(0,n-2).
1, 1, 2, 5, 3, 15, 28, 6, 52, 210, 190, 10, 203, 1506, 3360, 1340, 15, 877, 10871, 48321, 60270, 9065, 21, 4140, 80592, 636300, 1820056, 1132880, 57512, 28, 21147, 618939, 8081928, 45455676, 76834926, 21067452, 344316, 36, 115975, 4942070, 101684115, 1027544400, 3860929170, 3406410252, 377190240, 1966440, 45
Offset: 0
Examples
Triangle T(n,k) begins: : 1; : 1; : 2; : 5, 3; : 15, 28, 6; : 52, 210, 190, 10; : 203, 1506, 3360, 1340, 15; : 877, 10871, 48321, 60270, 9065, 21; : 4140, 80592, 636300, 1820056, 1132880, 57512, 28;
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
Crossrefs
Programs
-
Maple
T:= (n, k)-> binomial(n, k)*add(Stirling2(n-k, j)*(2^j-j-1)^k, j=0..n-k): seq(seq(T(n,k), k=0..max(0,n-2)), n=0..12); # Alois P. Heinz, Feb 18 2017
-
Mathematica
nn = 8; Drop[Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Sum[ (Exp[x] - 1)^n/n! Exp[y (2^n - n - 1) x], {n, 0,nn}], {x, 0, nn}], {x, y}]], 1] // Grid
Formula
E.g.f.: (exp(x) - 1)^n/n!*exp(y*(2^n - n - 1)*x).