cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282575 Triangular array read by rows. T(n,k) is the number of minimal covers of an n-set with exactly k points that are in more than one set of the cover, n>=0, 0<=k<=max(0,n-2).

Original entry on oeis.org

1, 1, 2, 5, 3, 15, 28, 6, 52, 210, 190, 10, 203, 1506, 3360, 1340, 15, 877, 10871, 48321, 60270, 9065, 21, 4140, 80592, 636300, 1820056, 1132880, 57512, 28, 21147, 618939, 8081928, 45455676, 76834926, 21067452, 344316, 36, 115975, 4942070, 101684115, 1027544400, 3860929170, 3406410252, 377190240, 1966440, 45
Offset: 0

Views

Author

Geoffrey Critzer, Feb 18 2017

Keywords

Examples

			Triangle T(n,k) begins:
:    1;
:    1;
:    2;
:    5,     3;
:   15,    28,      6;
:   52,   210,    190,      10;
:  203,  1506,   3360,    1340,      15;
:  877, 10871,  48321,   60270,    9065,    21;
: 4140, 80592, 636300, 1820056, 1132880, 57512, 28;
		

Crossrefs

Cf. A035348. Row sums A046165. Column k=0 A000110. Column k=1 A003466.
Mirrored triangle gives A035347.

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*add(Stirling2(n-k, j)*(2^j-j-1)^k, j=0..n-k):
    seq(seq(T(n,k), k=0..max(0,n-2)), n=0..12);  # Alois P. Heinz, Feb 18 2017
  • Mathematica
    nn = 8; Drop[Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Sum[ (Exp[x] - 1)^n/n! Exp[y (2^n - n - 1) x], {n, 0,nn}], {x, 0, nn}], {x, y}]], 1] // Grid

Formula

E.g.f.: (exp(x) - 1)^n/n!*exp(y*(2^n - n - 1)*x).