A055643 Babylonian numbers: integers in base 60 with each sexagesimal digit represented by 2 decimal digits, leading zeros omitted.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110
Offset: 0
References
- Mohammad K. Azarian, Meftah al-hesab: A Summary, MJMS, Vol. 12, No. 2, Spring 2000, pp. 75-95. Mathematical Reviews, MR 1 764 526. Zentralblatt MATH, Zbl 1036.01002.
- Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.
- Georges Ifrah, Histoire Universelle des Chiffres, Paris, 1981.
- Georges Ifrah, From one to zero, A universal history of numbers, Viking Penguin Inc., 1985.
- Georges Ifrah, Universalgeschichte der Zahlen, Campus Verlag, Frankfurt, New York, 2. Auflage, 1987, pp. 210-221.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Wolfdieter Lang, Sumerian-Babylonian sexagesimal-decimal number system.
Crossrefs
Programs
-
Mathematica
Array[FromDigits@ Apply[Join, PadLeft[#, 2] & /@ IntegerDigits@ IntegerDigits[#, 60]] &, 71, 0] (* Michael De Vlieger, Jan 11 2018 *)
-
PARI
A055643(n)=fromdigits(digits(n,60),100) \\ M. F. Hasler, Jan 09 2018
-
Python
def a(n): return n if n < 60 else 100*a(n//60) + n%60 print([a(n) for n in range(71)]) # Michael S. Branicky, Oct 22 2022
Formula
a(60*n+r) = 100*a(n) + r, 0 <= r <= 59. - Jianing Song, Oct 22 2022
Extensions
a(69) and a(70) from WG Zeist, Sep 08 2012
Comments