A033676 Largest divisor of n <= sqrt(n).
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 4, 1, 3, 1, 4, 3, 2, 1, 4, 5, 2, 3, 4, 1, 5, 1, 4, 3, 2, 5, 6, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 6, 7, 5, 3, 4, 1, 6, 5, 7, 3, 2, 1, 6, 1, 2, 7, 8, 5, 6, 1, 4, 3, 7, 1, 8, 1, 2, 5, 4, 7, 6, 1, 8, 9, 2, 1, 7, 5, 2, 3
Offset: 1
References
- G. Tenenbaum, pp. 268 ff, in: R. L. Graham et al., eds., Mathematics of Paul Erdős I.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a033676 n = last $ takeWhile (<= a000196 n) $ a027750_row n -- Reinhard Zumkeller, Jun 04 2012
-
Maple
A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; end if; end do: a; end proc: # R. J. Mathar, Aug 09 2009
-
Mathematica
largestDivisorLEQR[n_Integer] := Module[{dvs = Divisors[n]}, dvs[[Ceiling[Length@dvs/2]]]]; largestDivisorLEQR /@ Range[100] (* Borislav Stanimirov, Mar 28 2010 *) Table[Last[Select[Divisors[n],#<=Sqrt[n]&]],{n,100}] (* Harvey P. Dale, Mar 17 2017 *)
-
PARI
A033676(n) = {local(d);if(n<2,1,d=divisors(n);d[(length(d)+1)\2])} \\ Michael B. Porter, Jan 30 2010
-
Python
from sympy import divisors def A033676(n): d = divisors(n) return d[(len(d)-1)//2] # Chai Wah Wu, Apr 05 2021
Formula
a(n) = n / A033677(n).
a(n) = A162348(2n-1). - Daniel Forgues, Sep 29 2014
Comments