A282753 Expansion of phi_{9, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
0, 1, 516, 19692, 264208, 1953150, 10161072, 40353656, 135274560, 387597717, 1007825400, 2357947812, 5202783936, 10604499542, 20822486496, 38461429800, 69260574976, 118587876786, 200000421972, 322687698140, 516037855200, 794644193952, 1216701070992
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[If[n>0, n^2 * DivisorSigma[7, n], 0], {n, 0, 22}] (* Indranil Ghosh, Mar 12 2017 *) nmax = 40; CoefficientList[Series[Sum[k^9*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
-
PARI
for(n=0, 22, print1(if(n==0, 0, n^2 * sigma(n, 7)),", ")) \\ Indranil Ghosh, Mar 12 2017
Formula
a(n) = n^2*A013955(n) for n > 0.
Sum_{k=1..n} a(k) ~ zeta(8) * n^10 / 10. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(7*e+7)-1)/(p^7-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-9). (End)
G.f.: Sum_{k>=1} k^9*x^k*(1 + x^k)/(1 - x^k)^3. - Vaclav Kotesovec, Aug 02 2025
Comments