A282781 Expansion of phi_{8, 3}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
0, 1, 264, 6588, 67648, 390750, 1739232, 5765144, 17318400, 43224597, 103158000, 214360212, 445665024, 815732918, 1521998016, 2574261000, 4433514496, 6975762354, 11411293608, 16983569900, 26433456000, 37980768672, 56591095968, 78310997448
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
a[0]=0;a[n_]:=(n^3)*DivisorSigma[5,n];Table[a[n],{n,0,23}] (* Indranil Ghosh, Feb 21 2017 *) nmax = 30; CoefficientList[Series[Sum[k^8*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 02 2025 *)
-
PARI
a(n) = if (n==0, 0, n^3*sigma(n, 5)); \\ Michel Marcus, Feb 21 2017
Formula
a(n) = n^3*A001160(n) for n > 0.
Sum_{k=1..n} a(k) ~ zeta(6) * n^9 / 9. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(3*e) * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-8). (End)
G.f.: Sum_{k>=1} k^8*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4. - Vaclav Kotesovec, Aug 02 2025
Comments