cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A173953 a(n) = numerator of (Zeta(2, 3/4) - Zeta(2, n-1/4)), where Zeta is the Hurwitz Zeta function.

Original entry on oeis.org

0, 16, 928, 119344, 3078464, 1132669904, 606887707616, 49610806397296, 48006150564413056, 48265162121607952, 8192066749392160288, 15200753287254377716912, 33677610844789597790454208
Offset: 1

Views

Author

Artur Jasinski, Mar 03 2010

Keywords

Comments

All numbers in this sequence are divisible by 16. For A173953/16 see A173955.
a(n+2)/A173954(n+2) is, for n >= 0, the partial sum Sum_{k=0..n} 1/(k + 3/4)^2 = 16*Sum_{k=0..n} 1/(4*k + 3)^2. The limit n -> infinity is given in A282824 as Zeta(2, 3/4) = Psi(1, 3/4) = Pi^2 - 8*Catalan, with the trigamma function Psi(1, z) and the Catalan constant A006752.

Examples

			The rationals r(n) = Zeta(2, 3/4) - Zeta(2, n-1/4) begin:  0/1, 16/9, 928/441, 119344/53361, 3078464/1334025, 1132669904/481583025, 606887707616/254757420225, 49610806397296/20635351038225, ... - _Wolfdieter Lang_, Nov 14 2017
		

Crossrefs

Denominators are in A173954.

Programs

  • Magma
    [0] cat [Numerator((&+[16/(4*k+3)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018
  • Maple
    r := n -> Zeta(0, 2, 3/4) - Zeta(0, 2, n-1/4):
    seq(numer(simplify(r(n))), n=1..13); # Peter Luschny, Nov 14 2017
  • Mathematica
    Table[Numerator[FunctionExpand[Pi^2 - 8*Catalan - Zeta[2, (4*n - 1)/4]]], {n, 1, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[128*n*Sum[(4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2), {k, 1, Infinity}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)
    Numerator[Table[16*Sum[1/(4*k + 3)^2, {k, 0, n-1}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 15 2017 *)
  • PARI
    for(n=1,20, print1(numerator(16*sum(k=0,n-2, 1/(4*k+3)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

Formula

a(n) = Numerator of (Pi^2 - 8*Catalan - Zeta(2, (4 n - 1)/4)).
Numerator of 128*n*Sum_{k>=1} (4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2). - Vaclav Kotesovec, Nov 14 2017
Numerator of 16*Sum_{k=0..n-2} 1/(4*k + 3)^2, n >= 2, with a(1) = 0. See a comment above. - Wolfdieter Lang, Nov 14 2017

Extensions

Name simplified by Peter Luschny, Nov 14 2017

A282823 Decimal expansion of Pi^2 + 8*K, where K is Catalan's constant.

Original entry on oeis.org

1, 7, 1, 9, 7, 3, 2, 9, 1, 5, 4, 5, 0, 7, 1, 1, 0, 7, 3, 9, 2, 7, 1, 3, 1, 9, 1, 1, 9, 3, 3, 5, 2, 2, 4, 0, 2, 1, 5, 0, 6, 8, 9, 4, 4, 0, 1, 4, 9, 4, 1, 6, 7, 7, 0, 0, 5, 4, 5, 3, 3, 4, 3, 3, 3, 1, 9, 4, 1, 4, 8, 9, 8, 0, 6, 2, 9, 2, 4, 3, 3, 9, 8, 8, 3, 6, 6, 2, 5, 5, 0, 7
Offset: 2

Views

Author

Bruno Berselli, Mar 06 2017

Keywords

Examples

			17.19732915450711073927131911933522402150689440149416770054533433319414...
		

Crossrefs

Programs

Formula

Equals 16*A222183.
Equals Psi(1, 1/4), where Psi(r, x) is the Polygamma function of order r.
Equals Sum_{k>=0} 1/(k + 1/4)^2. - Amiram Eldar, May 17 2022

A375392 Decimal expansion of the hyperbolic volume of the link complement of the Borromean rings.

Original entry on oeis.org

7, 3, 2, 7, 7, 2, 4, 7, 5, 3, 4, 1, 7, 7, 5, 2, 1, 2, 0, 4, 3, 6, 8, 2, 8, 1, 1, 9, 4, 5, 9, 0, 7, 2, 8, 8, 6, 1, 9, 3, 1, 9, 4, 9, 9, 4, 2, 5, 3, 3, 7, 7, 0, 7, 4, 1, 3, 1, 9, 8, 4, 9, 5, 6, 9, 7, 4, 1, 0, 4, 1, 5, 8, 2, 1, 0, 0, 3, 8, 1, 5, 5, 8, 3, 4, 8, 5
Offset: 1

Views

Author

Luc Ta, Aug 21 2024

Keywords

Examples

			7.32772475341775212043682811945907288619319499425337707...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[8 * Catalan, 100]][[1]]

Formula

Equals 8*A006752 = 2*A247685.
Equals -16*Integral_{x=0..Pi/4} log|2*sin(x)| dx.
Equals 2*hyperbolic volume of the link complement of the Whitehead link.

A375772 Decimal expansion of the absolute value of the second derivative of the digamma function at 3/4.

Original entry on oeis.org

5, 3, 0, 2, 6, 3, 3, 2, 1, 6, 3, 3, 7, 6, 3, 9, 6, 3, 1, 4, 3, 2, 7, 0, 6, 9, 1, 0, 4, 3, 8, 4, 0, 9, 0, 7, 8, 3, 8, 8, 6, 5, 5, 2, 3, 9, 2, 9, 7, 7, 2, 1, 9, 9, 2, 0, 7, 8, 1, 3, 0, 8, 9, 1, 5, 3, 0, 1, 4, 9, 6, 8, 9, 1, 0, 2, 1, 2, 0, 9, 7, 5, 3, 0, 8, 1, 2, 6, 8, 5, 6, 9, 1, 7, 0, 0, 2, 0, 7, 0, 1, 2, 6, 9, 0
Offset: 1

Views

Author

R. J. Mathar, Aug 27 2024

Keywords

Examples

			psi''(3/4) = -5.3026332163376396314327...
		

Crossrefs

Cf. A200134 (psi(3/4)), A282824 (psi'(3/4)).

Programs

  • Maple
    2*(Pi^3-28*Zeta(3)); evalf(%) ;
  • Mathematica
    RealDigits[PolyGamma[2, 3/4], 10, 105][[1]] (* Vaclav Kotesovec, Aug 27 2024 *)

Formula

psi''(3/4) = 2*(Pi^3-28*zeta(3)).
Showing 1-4 of 4 results.