cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282988 Triangle of partitions of an n-set into boxes of size >= m.

Original entry on oeis.org

1, 2, 1, 5, 1, 1, 15, 4, 1, 1, 52, 11, 1, 1, 1, 203, 41, 11, 1, 1, 1, 877, 162, 36, 1, 1, 1, 1, 4140, 715, 92, 36, 1, 1, 1, 1, 21147, 3425, 491, 127, 1, 1, 1, 1, 1, 115975, 17722, 2557, 337, 127, 1, 1, 1, 1, 1, 678570, 98253, 11353, 793, 463, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Feb 26 2017

Keywords

Examples

			Triangle T(n,m) begins:
    1;
    2,   1;
    5,   1,   1;
   15,   4,   1,   1;
   52,  11,   1,   1,   1;
  203,  41,  11,   1,   1,   1;
  877, 162,  36,   1,   1,   1,   1;
  ...
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0, 1, add(
          T(n-j, k)*binomial(n-1, j-1), j=k..n))
        end:
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Sep 28 2017
  • Mathematica
    T[n_, m_] := T[n, m] = Which[Or[n == m, n == 0], 1, m == 0, 0, True, Sum[Binomial[n - 1, i + m - 1] T[n - i - m, m], {i, 0, n - m}]]; Table[T[n, m], {n, 11}, {m, n}] // Flatten (* Michael De Vlieger, Feb 26 2017 *)
  • Maxima
    T(n,m):=if n=m or n=0 then 1 else if m=0 then 0 else sum(binomial(n-1, i+m-1)*T(n-i-m,m), i, 0, n-m);

Formula

T(n,m) = Sum_{i=0..n-m} C(n-1, i+m-1)*T(n-i-m, m).
E.g.f. m column of T(n,m) is exp(exp(x)-Sum_{k=0..m} 1/k!x^k).