A283070 Sierpinski tetrahedron or tetrix numbers: a(n) = 2*4^n + 2.
4, 10, 34, 130, 514, 2050, 8194, 32770, 131074, 524290, 2097154, 8388610, 33554434, 134217730, 536870914, 2147483650, 8589934594, 34359738370, 137438953474, 549755813890, 2199023255554, 8796093022210, 35184372088834, 140737488355330, 562949953421314
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Independence Number
- Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph
- Eric Weisstein's World of Mathematics, Tetrix
- Eric Weisstein's World of Mathematics, Vertex Count
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Crossrefs
Programs
-
Mathematica
Table[2 4^n + 2, {n, 0, 30}] (* Bruno Berselli, Feb 28 2017 *) 2 (4^Range[0, 20] + 1) (* Eric W. Weisstein, Aug 17 2017 *) LinearRecurrence[{5, -4}, {4, 10}, 20] (* Eric W. Weisstein, Aug 17 2017 *) CoefficientList[Series[-((2 (-2 + 5 x))/(1 - 5 x + 4 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 17 2017 *)
-
PARI
a(n)=2*4^n+2 \\ Charles R Greathouse IV, Feb 28 2017
-
PARI
Vec(2*(2 - 5*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Mar 02 2017
-
Python
def a(n): return 2*4**n + 2 print([a(n) for n in range(25)]) # Michael S. Branicky, Aug 29 2021
Formula
Extensions
Entry revised by Editors of OEIS, Mar 01 2017
Comments