A283303
List points (x,y) having integer coordinates with x >= y >= 0, sorted first by x^2+y^2 and in case of a tie, by x-coordinate. Sequence gives x-coordinates.
Original entry on oeis.org
0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 4, 4, 5, 5, 5, 4, 5, 6, 6, 6, 5, 6, 7, 5, 7, 6, 7, 7, 6, 8, 7, 8, 8, 6, 8, 7, 8, 9, 9, 7, 9, 8, 9, 9, 7, 8, 10, 10, 10, 9, 10, 8, 10, 9, 11, 11, 10, 11, 8, 9, 11, 10, 11, 12, 9, 12, 11, 12, 10, 12, 11, 12, 9, 10, 12, 13, 11, 13, 13, 13, 12, 10, 11, 13, 12, 13, 14
Offset: 1
The first few points (listing [x^2+y^2,x,y]) are:
[0, 0, 0], [1, 1, 0], [2, 1, 1], [4, 2, 0], [5, 2, 1], [8, 2, 2], [9, 3, 0], [10, 3, 1], [13, 3, 2], [16, 4, 0], [17, 4, 1], [18, 3, 3], [20, 4, 2], [25, 4, 3], [25, 5, 0], [26, 5, 1], [29, 5, 2], [32, 4, 4], [34, 5, 3], [36, 6, 0], [37, 6, 1], [40, 6, 2], [41, 5, 4], [45, 6, 3], [49, 7, 0], ...
-
L:=[];
M:=30;
for i from 0 to M do
for j from 0 to i do
L:=[op(L),[i^2+j^2,i,j]]; od: od:
t3:= sort(L,proc(a,b) evalb(a[1]<=b[1]); end);
t3x:=[seq(t3[i][2],i=1..100)]; # A283303
t3y:=[seq(t3[i][3],i=1..100)]; # A283304
-
nt = 105; (* number of terms to produce *)
S[m_] := S[m] = Table[{x, y}, {y, 0, m}, {x, y, m}] // Flatten[#, 1]& // SortBy[#, {#.#&, #[[1]]&}]& // #[[All, 1]]& // PadRight[#, nt]&
S[m = 2];
S[m = 2 m];
While[S[m] =!= S[m/2], m = 2 m];
S[m] (* Jean-François Alcover, Mar 05 2023 *)
A283305
List points (x,y) having integer coordinates with x >= 0, y >= 0, sorted first by x^2+y^2 and in case of a tie, by x-coordinate. Sequence gives x-coordinates.
Original entry on oeis.org
0, 0, 1, 1, 0, 2, 1, 2, 2, 0, 3, 1, 3, 2, 3, 0, 4, 1, 4, 3, 2, 4, 0, 3, 4, 5, 1, 5, 2, 5, 4, 3, 5, 0, 6, 1, 6, 2, 6, 4, 5, 3, 6, 0, 7, 1, 5, 7, 4, 6, 2, 7, 3, 7, 5, 6, 0, 8, 1, 4, 7, 8, 2, 8, 6, 3, 8, 5, 7, 4, 8, 0, 9, 1, 9, 2, 6, 7, 9, 5, 8, 3, 9, 4, 9, 7, 0, 6, 8, 10, 1, 10, 2, 10, 5, 9, 3, 10, 7, 8
Offset: 1
The first few points (listing [x^2+y^2,x,y]) are: [0, 0, 0], [1, 0, 1], [1, 1, 0], [2, 1, 1], [4, 0, 2], [4, 2, 0], [5, 1, 2], [5, 2, 1], [8, 2, 2], [9, 0, 3], [9, 3, 0], [10, 1, 3], [10, 3, 1], [13, 2, 3], [13, 3, 2], [16, 0, 4], [16, 4, 0], [17, 1, 4], [17, 4, 1], [18, 3, 3], [20, 2, 4], [20, 4, 2], [25, 0, 5], [25, 3, 4], [25, 4, 3], ...
-
L:=[];
M:=30;
for i from 0 to M do
for j from 0 to M do
L:=[op(L),[i^2+j^2,i,j]]; od: od:
t4:= sort(L,proc(a,b) evalb(a[1]<=b[1]); end);
t4x:=[seq(t4[i][2],i=1..100)]; # A283305
t4y:=[seq(t4[i][3],i=1..100)]; # A283306
-
nt = 105; (* number of terms to produce *)
S[m_] := S[m] = Table[{x, y}, {x, 0, m}, {y, 0, m}] // Flatten[#, 1]& // SortBy[#, {#.#&, #[[1]]&}]& // #[[All, 1]]& // PadRight[#, nt]&;
S[m = 2];
S[m = 2m];
While[S[m] =!= S[m/2], m = 2m];
S[m] (* Jean-François Alcover, Mar 05 2023 *)
-
for(r2=0,113,for(x=0,round(sqrt(r2)),y2=r2-x^2;if(issquare(y2),print1(x,", ")))) \\ Hugo Pfoertner, Jun 18 2018
A283308
List points (x,y) having integer coordinates, sorted first by x^2+y^2 and in case of ties, by x-coordinate and then by y-coordinate. Sequence gives y-coordinates.
Original entry on oeis.org
0, 0, -1, 1, 0, -1, 1, -1, 1, 0, -2, 2, 0, -1, 1, -2, 2, -2, 2, -1, 1, -2, 2, -2, 2, 0, -3, 3, 0, -1, 1, -3, 3, -3, 3, -1, 1, -2, 2, -3, 3, -3, 3, -2, 2, 0, -4, 4, 0, -1, 1, -4, 4, -4, 4, -1, 1, -3, 3, -3, 3, -2, 2, -4, 4, -4, 4, -2, 2, 0, -3, 3, -4, 4, -5, 5, -4, 4, -3, 3, 0, -1, 1, -5, 5, -5, 5
Offset: 1
The first few points (listing [x^2+y^2,x,y]) are: [0, 0, 0], [1, -1, 0], [1, 0, -1], [1, 0, 1], [1, 1, 0], [2, -1, -1], [2, -1, 1], [2, 1, -1], [2, 1, 1], [4, -2, 0], [4, 0, -2], [4, 0, 2], [4, 2, 0], [5, -2, -1], [5, -2, 1], [5, -1, -2], [5, -1, 2], [5, 1, -2], [5, 1, 2], [5, 2, -1], [5, 2, 1], [8, -2, -2], [8, -2, 2], [8, 2, -2], ...
-
L:=[];
M:=30;
for i from -M to M do
for j from -M to M do
L:=[op(L),[i^2+j^2,i,j]]; od: od:
t6:= sort(L,proc(a,b) evalb(a[1]<=b[1]); end);
t6x:=[seq(t6[i][2],i=1..100)]; # A283307
t6y:=[seq(t6[i][3],i=1..100)]; # A283308
-
rs(t)=round(sqrt(abs(t)));pt(t)=print1(rs(t)*sign(t),", ");for(r2=0,26,xm=rs(r2);for(x=-xm,xm,y2=r2-x^2;if(issquare(y2),if(y2==0,pt(0),pt(-y2);pt(y2))))) \\ Hugo Pfoertner, Jun 18 2018
A283306
List points (x,y) having integer coordinates with x >= 0, y >= 0, sorted first by x^2+y^2 and in case of a tie, by x-coordinate. Sequence gives y-coordinates.
Original entry on oeis.org
0, 1, 0, 1, 2, 0, 2, 1, 2, 3, 0, 3, 1, 3, 2, 4, 0, 4, 1, 3, 4, 2, 5, 4, 3, 0, 5, 1, 5, 2, 4, 5, 3, 6, 0, 6, 1, 6, 2, 5, 4, 6, 3, 7, 0, 7, 5, 1, 6, 4, 7, 2, 7, 3, 6, 5, 8, 0, 8, 7, 4, 1, 8, 2, 6, 8, 3, 7, 5, 8, 4, 9, 0, 9, 1, 9, 7, 6, 2, 8, 5, 9, 3, 9, 4, 7, 10, 8, 6, 0, 10, 1, 10, 2, 9, 5, 10, 3, 8, 7
Offset: 1
The first few points (listing [x^2+y^2,x,y]) are: [0, 0, 0], [1, 0, 1], [1, 1, 0], [2, 1, 1], [4, 0, 2], [4, 2, 0], [5, 1, 2], [5, 2, 1], [8, 2, 2], [9, 0, 3], [9, 3, 0], [10, 1, 3], [10, 3, 1], [13, 2, 3], [13, 3, 2], [16, 0, 4], [16, 4, 0], [17, 1, 4], [17, 4, 1], [18, 3, 3], [20, 2, 4], [20, 4, 2], [25, 0, 5], [25, 3, 4], [25, 4, 3], ...
-
L:=[];
M:=30;
for i from 0 to M do
for j from 0 to M do
L:=[op(L),[i^2+j^2,i,j]]; od: od:
t4:= sort(L,proc(a,b) evalb(a[1]<=b[1]); end);
t4x:=[seq(t4[i][2],i=1..100)]; # A283305
t4y:=[seq(t4[i][3],i=1..100)]; # A283306
-
nt = 105; (* number of terms to produce *)
S[m_] := S[m] = Table[{x, y}, {x, 0, m}, {y, 0, m}] // Flatten[#, 1]& // SortBy[#, {#.#&, #[[1]]&}]& // #[[All, 2]]& // PadRight[#, nt]&
S[m = 2];
S[m = 2m];
While[S[m] =!= S[m/2], m = 2m];
S[m] (* Jean-François Alcover, Mar 05 2023 *)
-
for(r2=0,113,for(x=0,round(sqrt(r2)),y2=r2-x^2; if(issquare(y2), print1(round(sqrt(y2)),", ")))) \\ Hugo Pfoertner, Jun 18 2018
A283307
List points (x,y) having integer coordinates, sorted first by x^2+y^2 and in case of ties, by x-coordinate and then by y-coordinate. Sequence gives x-coordinates.
Original entry on oeis.org
0, -1, 0, 0, 1, -1, -1, 1, 1, -2, 0, 0, 2, -2, -2, -1, -1, 1, 1, 2, 2, -2, -2, 2, 2, -3, 0, 0, 3, -3, -3, -1, -1, 1, 1, 3, 3, -3, -3, -2, -2, 2, 2, 3, 3, -4, 0, 0, 4, -4, -4, -1, -1, 1, 1, 4, 4, -3, -3, 3, 3, -4, -4, -2, -2, 2, 2, 4, 4, -5, -4, -4, -3, -3, 0, 0, 3, 3, 4, 4, 5, -5, -5, -1, -1, 1
Offset: 1
The first few points (listing [x^2+y^2,x,y]) are: [0, 0, 0], [1, -1, 0], [1, 0, -1], [1, 0, 1], [1, 1, 0], [2, -1, -1], [2, -1, 1], [2, 1, -1], [2, 1, 1], [4, -2, 0], [4, 0, -2], [4, 0, 2], [4, 2, 0], [5, -2, -1], [5, -2, 1], [5, -1, -2], [5, -1, 2], [5, 1, -2], [5, 1, 2], [5, 2, -1], [5, 2, 1], [8, -2, -2], [8, -2, 2], [8, 2, -2], ...
-
L:=[];
M:=30;
for i from -M to M do
for j from -M to M do
L:=[op(L),[i^2+j^2,i,j]]; od: od:
t6:= sort(L,proc(a,b) evalb(a[1]<=b[1]); end);
t6x:=[seq(t6[i][2],i=1..100)]; # A283307
t6y:=[seq(t6[i][3],i=1..100)]; # A283308
-
pt(t)=print1(t,", ");for(r2=0,26,xm=round(sqrt(r2));for(x=-xm,xm,y2=r2-x^2;if(issquare(y2),if(y2!=0,pt(x));pt(x)))) \\ Hugo Pfoertner, Jun 18 2018
A229140
Smallest k such that k^2 + l^2 = n-th number expressible as sum of two squares (A001481).
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 2, 0, 1, 2, 4, 3, 0, 1, 2, 4, 3, 0, 1, 4, 2, 3, 5, 0, 1, 2, 6, 3, 5, 4, 0, 1, 2, 5, 3, 4, 7, 0, 1, 2, 5, 3, 7, 4, 6, 0, 1, 2, 8, 3, 6, 4, 0, 1, 5, 2, 7, 3, 6, 4, 9, 8, 0, 1, 2, 3, 6, 9, 4, 7, 5, 0, 1, 2, 9, 3, 8, 4, 7, 5, 0
Offset: 1
The 6th number expressible as sum of two squares A001481(6) = 8 = 2^2 + 2^2, so a(6)=2.
-
for(n=0, 300, s=sqrtint(n); forstep(i=s, 0, -1, if(issquare(n-i*i), print1(sqrtint(n-i*i), ", "); break))); \\ shift corrected by Michel Marcus, Jul 08 2025
A385236
Largest x such that x^2+y^2 = A001481(n), x and y are nonnegative integers.
Original entry on oeis.org
0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 4, 5, 5, 5, 4, 5, 6, 6, 6, 5, 6, 7, 7, 6, 7, 7, 6, 8, 8, 8, 6, 8, 7, 8, 9, 9, 9, 8, 9, 9, 7, 10, 10, 10, 9, 10, 8, 10, 9, 11, 11, 11, 8, 11, 10, 11, 12, 12, 11, 12, 10, 12, 11, 12, 9, 10, 13, 13, 13, 13, 12, 10, 13, 12, 13, 14, 14, 14, 11, 14, 12, 14, 13, 14, 15
Offset: 1
For n=9, A001481(9)=13=2^2+3^2, so A229140(9)=2 and a(9)=3.
For n=14, A001481(14)=25=3^2+4^2=0^2+5^2, so A229140(14)=0 and a(14)=5.
-
for(n=0, 300, s=sqrtint(n); forstep(i=s, 0, -1, if(issquare(n-i*i), print1(i, ", "); break)))
Showing 1-7 of 7 results.
Comments