A283303
List points (x,y) having integer coordinates with x >= y >= 0, sorted first by x^2+y^2 and in case of a tie, by x-coordinate. Sequence gives x-coordinates.
Original entry on oeis.org
0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 4, 4, 5, 5, 5, 4, 5, 6, 6, 6, 5, 6, 7, 5, 7, 6, 7, 7, 6, 8, 7, 8, 8, 6, 8, 7, 8, 9, 9, 7, 9, 8, 9, 9, 7, 8, 10, 10, 10, 9, 10, 8, 10, 9, 11, 11, 10, 11, 8, 9, 11, 10, 11, 12, 9, 12, 11, 12, 10, 12, 11, 12, 9, 10, 12, 13, 11, 13, 13, 13, 12, 10, 11, 13, 12, 13, 14
Offset: 1
The first few points (listing [x^2+y^2,x,y]) are:
[0, 0, 0], [1, 1, 0], [2, 1, 1], [4, 2, 0], [5, 2, 1], [8, 2, 2], [9, 3, 0], [10, 3, 1], [13, 3, 2], [16, 4, 0], [17, 4, 1], [18, 3, 3], [20, 4, 2], [25, 4, 3], [25, 5, 0], [26, 5, 1], [29, 5, 2], [32, 4, 4], [34, 5, 3], [36, 6, 0], [37, 6, 1], [40, 6, 2], [41, 5, 4], [45, 6, 3], [49, 7, 0], ...
-
L:=[];
M:=30;
for i from 0 to M do
for j from 0 to i do
L:=[op(L),[i^2+j^2,i,j]]; od: od:
t3:= sort(L,proc(a,b) evalb(a[1]<=b[1]); end);
t3x:=[seq(t3[i][2],i=1..100)]; # A283303
t3y:=[seq(t3[i][3],i=1..100)]; # A283304
-
nt = 105; (* number of terms to produce *)
S[m_] := S[m] = Table[{x, y}, {y, 0, m}, {x, y, m}] // Flatten[#, 1]& // SortBy[#, {#.#&, #[[1]]&}]& // #[[All, 1]]& // PadRight[#, nt]&
S[m = 2];
S[m = 2 m];
While[S[m] =!= S[m/2], m = 2 m];
S[m] (* Jean-François Alcover, Mar 05 2023 *)
A283304
List points (x,y) having integer coordinates with x >= y >= 0, sorted first by x^2+y^2 and in case of a tie, by x-coordinate. Sequence gives y-coordinates.
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 2, 3, 0, 1, 2, 4, 3, 0, 1, 2, 4, 3, 0, 5, 1, 4, 2, 3, 5, 0, 4, 1, 2, 6, 3, 5, 4, 0, 1, 6, 2, 5, 3, 4, 7, 6, 0, 1, 2, 5, 3, 7, 4, 6, 0, 1, 5, 2, 8, 7, 3, 6, 4, 0, 8, 1, 5, 2, 7, 3, 6, 4, 9, 8, 5, 0, 7, 1, 2, 3, 6, 9, 8, 4, 7, 5, 0, 1, 10, 2, 9, 6, 3, 8, 4, 7, 10, 5
Offset: 1
The first few points (listing [x^2+y^2,x,y]) are:
[0, 0, 0], [1, 1, 0], [2, 1, 1], [4, 2, 0], [5, 2, 1], [8, 2, 2], [9, 3, 0], [10, 3, 1], [13, 3, 2], [16, 4, 0], [17, 4, 1], [18, 3, 3], [20, 4, 2], [25, 4, 3], [25, 5, 0], [26, 5, 1], [29, 5, 2], [32, 4, 4], [34, 5, 3], [36, 6, 0], [37, 6, 1], [40, 6, 2], [41, 5, 4], [45, 6, 3], [49, 7, 0], ...
-
L:=[];
M:=30;
for i from 0 to M do
for j from 0 to i do
L:=[op(L),[i^2+j^2,i,j]]; od: od:
t3:= sort(L,proc(a,b) evalb(a[1]<=b[1]); end);
t3x:=[seq(t3[i][2],i=1..100)]; # A283303
t3y:=[seq(t3[i][3],i=1..100)]; # A283304
-
nt = 105; (* number of terms to produce *)
S[m_] := S[m] = Table[{x, y}, {y, 0, m}, {x, y, m}] // Flatten[#, 1]& // SortBy[#, {#.#&, #[[1]]&}]& // #[[All, 2]]& // PadRight[#, nt]&
S[m = 2];
S[m = 2 m];
While[S[m] =!= S[m/2], m = 2 m];
S[m] (* Jean-François Alcover, Mar 05 2023 *)
A283308
List points (x,y) having integer coordinates, sorted first by x^2+y^2 and in case of ties, by x-coordinate and then by y-coordinate. Sequence gives y-coordinates.
Original entry on oeis.org
0, 0, -1, 1, 0, -1, 1, -1, 1, 0, -2, 2, 0, -1, 1, -2, 2, -2, 2, -1, 1, -2, 2, -2, 2, 0, -3, 3, 0, -1, 1, -3, 3, -3, 3, -1, 1, -2, 2, -3, 3, -3, 3, -2, 2, 0, -4, 4, 0, -1, 1, -4, 4, -4, 4, -1, 1, -3, 3, -3, 3, -2, 2, -4, 4, -4, 4, -2, 2, 0, -3, 3, -4, 4, -5, 5, -4, 4, -3, 3, 0, -1, 1, -5, 5, -5, 5
Offset: 1
The first few points (listing [x^2+y^2,x,y]) are: [0, 0, 0], [1, -1, 0], [1, 0, -1], [1, 0, 1], [1, 1, 0], [2, -1, -1], [2, -1, 1], [2, 1, -1], [2, 1, 1], [4, -2, 0], [4, 0, -2], [4, 0, 2], [4, 2, 0], [5, -2, -1], [5, -2, 1], [5, -1, -2], [5, -1, 2], [5, 1, -2], [5, 1, 2], [5, 2, -1], [5, 2, 1], [8, -2, -2], [8, -2, 2], [8, 2, -2], ...
-
L:=[];
M:=30;
for i from -M to M do
for j from -M to M do
L:=[op(L),[i^2+j^2,i,j]]; od: od:
t6:= sort(L,proc(a,b) evalb(a[1]<=b[1]); end);
t6x:=[seq(t6[i][2],i=1..100)]; # A283307
t6y:=[seq(t6[i][3],i=1..100)]; # A283308
-
rs(t)=round(sqrt(abs(t)));pt(t)=print1(rs(t)*sign(t),", ");for(r2=0,26,xm=rs(r2);for(x=-xm,xm,y2=r2-x^2;if(issquare(y2),if(y2==0,pt(0),pt(-y2);pt(y2))))) \\ Hugo Pfoertner, Jun 18 2018
A283306
List points (x,y) having integer coordinates with x >= 0, y >= 0, sorted first by x^2+y^2 and in case of a tie, by x-coordinate. Sequence gives y-coordinates.
Original entry on oeis.org
0, 1, 0, 1, 2, 0, 2, 1, 2, 3, 0, 3, 1, 3, 2, 4, 0, 4, 1, 3, 4, 2, 5, 4, 3, 0, 5, 1, 5, 2, 4, 5, 3, 6, 0, 6, 1, 6, 2, 5, 4, 6, 3, 7, 0, 7, 5, 1, 6, 4, 7, 2, 7, 3, 6, 5, 8, 0, 8, 7, 4, 1, 8, 2, 6, 8, 3, 7, 5, 8, 4, 9, 0, 9, 1, 9, 7, 6, 2, 8, 5, 9, 3, 9, 4, 7, 10, 8, 6, 0, 10, 1, 10, 2, 9, 5, 10, 3, 8, 7
Offset: 1
The first few points (listing [x^2+y^2,x,y]) are: [0, 0, 0], [1, 0, 1], [1, 1, 0], [2, 1, 1], [4, 0, 2], [4, 2, 0], [5, 1, 2], [5, 2, 1], [8, 2, 2], [9, 0, 3], [9, 3, 0], [10, 1, 3], [10, 3, 1], [13, 2, 3], [13, 3, 2], [16, 0, 4], [16, 4, 0], [17, 1, 4], [17, 4, 1], [18, 3, 3], [20, 2, 4], [20, 4, 2], [25, 0, 5], [25, 3, 4], [25, 4, 3], ...
-
L:=[];
M:=30;
for i from 0 to M do
for j from 0 to M do
L:=[op(L),[i^2+j^2,i,j]]; od: od:
t4:= sort(L,proc(a,b) evalb(a[1]<=b[1]); end);
t4x:=[seq(t4[i][2],i=1..100)]; # A283305
t4y:=[seq(t4[i][3],i=1..100)]; # A283306
-
nt = 105; (* number of terms to produce *)
S[m_] := S[m] = Table[{x, y}, {x, 0, m}, {y, 0, m}] // Flatten[#, 1]& // SortBy[#, {#.#&, #[[1]]&}]& // #[[All, 2]]& // PadRight[#, nt]&
S[m = 2];
S[m = 2m];
While[S[m] =!= S[m/2], m = 2m];
S[m] (* Jean-François Alcover, Mar 05 2023 *)
-
for(r2=0,113,for(x=0,round(sqrt(r2)),y2=r2-x^2; if(issquare(y2), print1(round(sqrt(y2)),", ")))) \\ Hugo Pfoertner, Jun 18 2018
A283307
List points (x,y) having integer coordinates, sorted first by x^2+y^2 and in case of ties, by x-coordinate and then by y-coordinate. Sequence gives x-coordinates.
Original entry on oeis.org
0, -1, 0, 0, 1, -1, -1, 1, 1, -2, 0, 0, 2, -2, -2, -1, -1, 1, 1, 2, 2, -2, -2, 2, 2, -3, 0, 0, 3, -3, -3, -1, -1, 1, 1, 3, 3, -3, -3, -2, -2, 2, 2, 3, 3, -4, 0, 0, 4, -4, -4, -1, -1, 1, 1, 4, 4, -3, -3, 3, 3, -4, -4, -2, -2, 2, 2, 4, 4, -5, -4, -4, -3, -3, 0, 0, 3, 3, 4, 4, 5, -5, -5, -1, -1, 1
Offset: 1
The first few points (listing [x^2+y^2,x,y]) are: [0, 0, 0], [1, -1, 0], [1, 0, -1], [1, 0, 1], [1, 1, 0], [2, -1, -1], [2, -1, 1], [2, 1, -1], [2, 1, 1], [4, -2, 0], [4, 0, -2], [4, 0, 2], [4, 2, 0], [5, -2, -1], [5, -2, 1], [5, -1, -2], [5, -1, 2], [5, 1, -2], [5, 1, 2], [5, 2, -1], [5, 2, 1], [8, -2, -2], [8, -2, 2], [8, 2, -2], ...
-
L:=[];
M:=30;
for i from -M to M do
for j from -M to M do
L:=[op(L),[i^2+j^2,i,j]]; od: od:
t6:= sort(L,proc(a,b) evalb(a[1]<=b[1]); end);
t6x:=[seq(t6[i][2],i=1..100)]; # A283307
t6y:=[seq(t6[i][3],i=1..100)]; # A283308
-
pt(t)=print1(t,", ");for(r2=0,26,xm=round(sqrt(r2));for(x=-xm,xm,y2=r2-x^2;if(issquare(y2),if(y2!=0,pt(x));pt(x)))) \\ Hugo Pfoertner, Jun 18 2018
A305260
A linear mapping a(n) = x + y*n of pairs of nonnegative integers (x,y), where the pairs are enumerated first by radial coordinate r and in case of ties, by polar angle 0 <= phi <= Pi/2 in a polar coordinate system.
Original entry on oeis.org
0, 1, 2, 4, 2, 10, 8, 15, 18, 3, 30, 14, 37, 29, 44, 4, 64, 21, 73, 60, 44, 86, 5, 73, 99, 125, 31, 136, 61, 147, 124, 98, 163, 6, 204, 41, 217, 80, 230, 161, 204, 129, 255, 7, 308, 52, 235, 330, 198, 298, 107, 359, 163, 374, 276, 335, 8, 456, 66, 243, 424, 489, 132, 506, 390, 203, 531
Offset: 0
y:
|
8 | 57 61 63 66 70
|
7 | 44 47 51 53 60 68
|
6 | 34 36 38 42 49 55 64
|
5 | 25 27 29 32 40 46 54 67
|
4 | 16 18 21 24 30 39 48 59 69
|
3 | 10 12 14 19 23 31 41 52 65
|
2 | 5 7 8 13 20 28 37 50 62
|
1 | 2 3 6 11 17 26 35 45 58
|
0 | 0 1 4 9 15 22 33 43 56 71
_______________________________________
x: 0 1 2 3 4 5 6 7 8 9
.
a(5) = x(5) + 5*y(5) = 0 + 5*2 = 10,
a(14) = x(14) + 14*y(14) = 2 + 14*3 = 44,
a(20) = x(20) + 20*y(20) = 4 + 20*2 = 44.
-
n=-1;for(r2=0,81,for(y=0,round(sqrt(r2)),x2=r2-y^2;if(issquare(x2),print1(round(sqrt(x2))+y*(n++),", "))))
Showing 1-6 of 6 results.
Comments