A283333 Main diagonal of A283272.
1, -1, -4, -19, -55, 5179, 408149, 23366098, -2659962750, -2946880278857, -1715161696081878, 603927037021100215, 9904716216487281046207, 52286804207990141325901614, -71925062774291844591785748425, -17522340813140430159774329947096591
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..80
Crossrefs
Cf. A283272.
Programs
-
Ruby
require 'prime' def power(a, n) return 1 if n == 0 k = power(a, n >> 1) k *= k return k if n & 1 == 0 return k * a end def sigma(x, i) sum = 1 pq = i.prime_division if x == 0 pq.each{|a, n| sum *= n + 1} else pq.each{|a, n| sum *= (power(a, (n + 1) * x) - 1) / (power(a, x) - 1)} end sum end def A(k, m, n) ary = [1] s_ary = [0] + (1..n).map{|i| sigma(k, i * m)} (1..n).each{|i| ary << (1..i).inject(0){|s, j| s - ary[-j] * s_ary[j]} / i} ary end def A283333(n) (0..n).map{|i| A(i + 1, 1, i)[-1]} end
Formula
a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(k^n). - Ilya Gutkovskiy, Mar 06 2018