cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283333 Main diagonal of A283272.

Original entry on oeis.org

1, -1, -4, -19, -55, 5179, 408149, 23366098, -2659962750, -2946880278857, -1715161696081878, 603927037021100215, 9904716216487281046207, 52286804207990141325901614, -71925062774291844591785748425, -17522340813140430159774329947096591
Offset: 0

Views

Author

Seiichi Manyama, Mar 04 2017

Keywords

Crossrefs

Cf. A283272.

Programs

  • Ruby
    require 'prime'
    def power(a, n)
      return 1 if n == 0
      k = power(a, n >> 1)
      k *= k
      return k if n & 1 == 0
      return k * a
    end
    def sigma(x, i)
      sum = 1
      pq = i.prime_division
      if x == 0
        pq.each{|a, n| sum *= n + 1}
      else
        pq.each{|a, n| sum *= (power(a, (n + 1) * x) - 1) / (power(a, x) - 1)}
      end
      sum
    end
    def A(k, m, n)
      ary = [1]
      s_ary = [0] + (1..n).map{|i| sigma(k, i * m)}
      (1..n).each{|i| ary << (1..i).inject(0){|s, j| s - ary[-j] * s_ary[j]} / i}
      ary
    end
    def A283333(n)
      (0..n).map{|i| A(i + 1, 1, i)[-1]}
    end

Formula

a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(k^n). - Ilya Gutkovskiy, Mar 06 2018