cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108951 Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520
Offset: 1

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

This sequence is a permutation of A025487.
And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015

Examples

			a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    primorial(n)=prod(i=1,primepi(n),prime(i))
    a(n)=my(f=factor(n)); prod(i=1,#f~, primorial(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
    
  • Python
    from sympy import primerange, factorint
    from operator import mul
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    def p(f):
        return sharp_primorial(f[0])^f[1]
    [prod(p(f) for f in factor(n)) for n in range (1,51)]
    # Giuseppe Coppoletta, Feb 07 2015
    

Formula

Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014]
From Antti Karttunen, Jul 21 2014: (Start)
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
a(n) = n * A181811(n).
a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020]
a(n) = A181812(A048673(n)).
Other identities:
A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]
A071178(a(n)) = A071178(n). [And also its exponent.]
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
From Antti Karttunen, Nov 19 2019: (Start)
Further identities:
a(A307035(n)) = A000142(n).
a(A003418(n)) = A181814(n).
a(A025487(n)) = A181817(n).
a(A181820(n)) = A181822(n).
a(A019565(n)) = A283477(n).
A001221(a(n)) = A061395(n).
A001222(a(n)) = A056239(n).
A181819(a(n)) = A122111(n).
A124859(a(n)) = A181821(n).
A085082(a(n)) = A238690(n).
A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)
A000188(a(n)) = A329602(n). (square root of the greatest square divisor)
A072411(a(n)) = A329378(n). (LCM of exponents of prime factors)
A005361(a(n)) = A329382(n). (product of exponents of prime factors)
A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)
A000005(a(n)) = A329605(n). (number of divisors)
A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)
A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)
A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)
A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)
A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)
A324580(a(n)) = A324887(n).
A276150(a(n)) = A324888(n). (digit sum in primorial base)
A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)
A243055(a(n)) = A329343(n).
A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)
A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)
A328114(a(n)) = A329344(n). (maximal digit in primorial base)
A062977(a(n)) = A325226(n).
A097248(a(n)) = A283478(n).
A324895(a(n)) = A324896(n).
A324655(a(n)) = A329046(n).
A327860(a(n)) = A329047(n).
A329601(a(n)) = A329607(n).
(End)
a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - Antti Karttunen, Dec 29 2019
From Antti Karttunen, Jul 09 2021: (Start)
a(n) = A346092(n) + A346093(n).
a(n) = A346108(n) - A346109(n).
a(A342012(n)) = A004490(n).
a(A337478(n)) = A336389(n).
A336835(a(n)) = A337474(n).
A342002(a(n)) = A342920(n).
A328571(a(n)) = A346091(n).
A328572(a(n)) = A344592(n).
(End)
Sum_{n>=1} 1/a(n) = A161360. - Amiram Eldar, Aug 04 2022

Extensions

More terms computed by Antti Karttunen, Jul 21 2014
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020

A097248 a(n) is the eventual stable point reached when iterating k -> A097246(k), starting from k = n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 6, 5, 10, 11, 5, 13, 14, 15, 5, 17, 10, 19, 15, 21, 22, 23, 10, 7, 26, 15, 21, 29, 30, 31, 10, 33, 34, 35, 15, 37, 38, 39, 30, 41, 42, 43, 33, 7, 46, 47, 15, 11, 14, 51, 39, 53, 30, 55, 42, 57, 58, 59, 7, 61, 62, 35, 15, 65, 66, 67, 51, 69, 70, 71, 30, 73, 74, 21
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2004

Keywords

Comments

a(n) = r(n,m) with m such that r(n,m)=r(n,m+1), where r(n,k) = A097246(r(n,k-1)), r(n,0)=n. (The original definition.)
A097248(n) = r(n,a(n)).
From Antti Karttunen, Nov 15 2016: (Start)
The above remark could be interpreted to mean that A097249(n) <= a(n).
All terms are squarefree, and the squarefree numbers are the fixed points.
These are also fixed points eventually reached when iterating A277886.
(End)

Crossrefs

Range of values is A005117.
A003961, A225546, A277885, A277886, A331590 are used to express relationship between terms of this sequence.
The formula section also details how the sequence maps the terms of A007913, A260443, A329050, A329332.
See comments/formulas in A283475, A283478, A331751 giving their relationship to this sequence.

Programs

  • Mathematica
    Table[FixedPoint[Times @@ Map[#1^#2 & @@ # &, Partition[#, 2, 2] &@ Flatten[FactorInteger[#] /. {p_, e_} /; e >= 2 :> {If[OddQ@ e, {p, 1}, {1, 1}], {NextPrime@ p, Floor[e/2]}}]] &, n], {n, 75}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i,1]+1)^(f[i,2]\2))*((f[i,1])^(f[i,2]%2))); };
    A097248(n) = { my(k=A097246(n)); while(k<>n, n = k; k = A097246(k)); k; };
    \\ Antti Karttunen, Mar 18 2017
    
  • Python
    from sympy import factorint, nextprime
    from operator import mul
    def a097246(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [(nextprime(i)**int(f[i]/2))*(i**(f[i]%2)) for i in f])
    def a(n):
        k=a097246(n)
        while k!=n:
            n=k
            k=a097246(k)
        return k # Indranil Ghosh, May 15 2017
  • Scheme
    ;; with memoization-macro definec
    ;; Two implementations:
    (definec (A097248 n) (if (not (zero? (A008683 n))) n (A097248 (A097246 n))))
    (definec (A097248 n) (if (zero? (A277885 n)) n (A097248 (A277886 n))))
    ;; Antti Karttunen, Nov 15 2016
    

Formula

a(A005117(n)) = A005117(n).
From Antti Karttunen, Nov 15 2016: (Start)
If A008683(n) <> 0 [when n is squarefree], a(n) = n, otherwise a(n) = a(A097246(n)).
If A277885(n) = 0, a(n) = n, otherwise a(n) = a(A277886(n)).
A007913(a(n)) = a(n).
a(A007913(n)) = A007913(n).
A048675(a(n)) = A048675(n).
a(A260443(n)) = A019565(n).
(End)
From Peter Munn, Feb 06 2020: (Start)
a(1) = 1; a(p) = p, for prime p; a(m*k) = A331590(a(m), a(k)).
a(A331590(m,k)) = A331590(a(m), a(k)).
a(n^2) = a(A003961(n)) = A003961(a(n)).
a(A225546(n)) = a(n).
a(n) = A225546(2^A048675(n)) = A019565(A048675(n)).
a(A329050(n,k)) = prime(n+k-1) = A000040(n+k-1).
a(A329332(n,k)) = A019565(n * k).
Equivalently, a(A019565(n)^k) = A019565(n * k).
(End)
From Antti Karttunen, Feb 22-25 & Mar 01 2020: (Start)
a(A019565(x)*A019565(y)) = A019565(x+y).
a(A332461(n)) = A332462(n).
a(A332824(n)) = A019565(n).
a(A277905(n,k)) = A277905(n,1) = A019565(n), for all n >= 1, and 1 <= k <= A018819(n).
(End)

Extensions

Name changed and the original definition moved to the Comments section by Antti Karttunen, Nov 15 2016

A283475 a(n) = A019565(A005187(n)).

Original entry on oeis.org

1, 2, 6, 5, 30, 7, 21, 42, 210, 11, 33, 66, 165, 330, 154, 231, 2310, 13, 39, 78, 195, 390, 182, 273, 1365, 2730, 286, 429, 1430, 2145, 1001, 2002, 30030, 17, 51, 102, 255, 510, 238, 357, 1785, 3570, 374, 561, 1870, 2805, 1309, 2618, 19635, 39270, 442, 663, 2210, 3315, 1547, 3094, 15470, 23205, 2431, 4862, 12155
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2017

Keywords

Crossrefs

Cf. A283476 (same sequence sorted into ascending order).

Programs

  • Mathematica
    Map[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[#, 2] &, Table[2 n - DigitCount[2 n, 2, 1], {n, 0, 60}]] (* Michael De Vlieger, Mar 16 2017 *)
  • Scheme
    (define (A283475 n) (A019565 (A005187 n)))

Formula

a(n) = A019565(A005187(n)).
Other identities:
If A004198(x,y) = 0, then a(x+y) = A097248(a(x)*a(y)).
For all n >= 1, a(A000051(n)) = A000040(n+2).
For all n >= 0, A001221(a(n)) = A001222(a(n)) = A280700(n).
For all n >= 0, A046523(a(n)) = A280705(n).
Showing 1-3 of 3 results.