cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A283674 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1-x^j)^(j^(k*j)) in powers of x.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 32, 5, 1, 1, 65, 746, 298, 7, 1, 1, 257, 19748, 66418, 3531, 11, 1, 1, 1025, 531698, 16799044, 9843707, 51609, 15, 1, 1, 4097, 14349932, 4295531890, 30535636881, 2187941520, 894834, 22, 1, 1, 16385, 387424586, 1099526502508, 95371863221411, 101591759812967, 680615139257, 17980052, 30
Offset: 0

Views

Author

Seiichi Manyama, Mar 14 2017

Keywords

Examples

			Square array begins:
   1,   1,     1,        1, ...
   1,   1,     1,        1, ...
   2,   5,    17,       65, ...
   3,  32,   746,    19748, ...
   5, 298, 66418, 16799044, ...
		

Crossrefs

Columns k=0-4 give A000041, A023880, A283579, A283580, A283510.
Rows give: 0-1: A000012, 2: A052539, 3: A283716.
Main diagonal gives A283719.
Cf. A283675.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
          d*d^(k*d), d=divisors(j))*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Mar 15 2017
  • Mathematica
    A[n_, k_] := If[n==0, 1, Sum[Sum[d*d^(k*d), {d, Divisors[j]}] *A[n - j, k], {j, n}] / n]; Flatten[Table[A[d - n,  n],{d, 0, 10},{n, d, 0, -1}]] (* Indranil Ghosh, Mar 17 2017 *)
  • PARI
    A(n, k) = if(n==0, 1, sum(j=1, n, sumdiv(j, d, d*d^(k*d)) * A(n - j, k))/n);
    {for(d=0, 10, for(n=0, d, print1(A(n, d - n),", ");); print(););} \\ Indranil Ghosh, Mar 17 2017

Formula

G.f. of column k: Product_{j>=1} 1/(1-x^j)^(j^(k*j)).
Showing 1-1 of 1 results.