A283761 Number of partitions of n into distinct multiplicatively perfect numbers (A007422).
1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 2, 3, 2, 1, 1, 1, 1, 3, 4, 3, 3, 3, 2, 3, 4, 5, 5, 4, 5, 6, 5, 7, 9, 8, 7, 8, 9, 10, 11, 12, 12, 12, 13, 14, 16, 18, 18, 18, 17, 18, 22, 24, 26, 28, 27, 27, 29, 32, 36, 38, 38, 40, 42, 43, 46, 50, 54, 57, 60, 61, 62, 67, 71, 74, 79, 83, 88, 90, 94, 102, 106, 108
Offset: 0
Keywords
Examples
a(15) = 3 because we have [15], [14, 1] and [8, 6, 1].
Links
- Eric Weisstein's World of Mathematics, Multiplicative Perfect Number
- Index entries for related partition-counting sequences
Programs
-
Mathematica
nmax = 85; CoefficientList[Series[Product[1 + Boole[Sqrt[k]^DivisorSigma[0, k]/k == k] x^k, {k, 1, nmax}], {x, 0, nmax}], x]
-
PARI
a(k) = k==1 || numdiv(k) == 4; Vec(prod(k=1, 85, 1 + a(k)*x^k) + O(x^86)) \\ Indranil Ghosh and modified by Michel Marcus, Mar 17 2017
Formula
G.f.: Product_{k>=1} (1 + x^A007422(k)).