cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A284308 Number A(n,k) of singular vector tuples for a general k-dimensional {n}^k tensor; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 37, 4, 1, 1, 120, 997, 240, 5, 1, 1, 720, 44121, 51264, 1621, 6, 1, 1, 5040, 2882071, 23096640, 2940841, 11256, 7, 1, 1, 40320, 260415373, 18754813440, 14346274601, 180296088, 79717, 8, 1, 1, 362880, 31088448777, 24874143759360, 153480509680141, 9859397817600, 11559133741, 572928, 9, 1
Offset: 1

Views

Author

Alois P. Heinz, Mar 24 2017

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,     1,         1,             1,                   1, ...
  1, 2,     6,        24,           120,                 720, ...
  1, 3,    37,       997,         44121,             2882071, ...
  1, 4,   240,     51264,      23096640,         18754813440, ...
  1, 5,  1621,   2940841,   14346274601,     153480509680141, ...
  1, 6, 11256, 180296088, 9859397817600, 1435747717722810960, ...
		

Crossrefs

Rows n=1-3 give: A000012, A000142, A274308.
Main diagonal gives A284309.

A283830 Number of singular vector tuples for a general 6-dimensional n X n X n X n X n X n tensor.

Original entry on oeis.org

1, 720, 2882071, 18754813440, 153480509680141, 1435747717722810960, 14662732377776152127011, 159330378168761744514908160, 1813222281365129112322849988761, 21386175398690803114094640652896720, 259532087509984537826921145014495182351
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2017

Keywords

References

  • Shalosh B. Ekhad and Doron Zeilberger, On the Number of Singular Vector Tuples of Hyper-Cubical Tensors, arXiv preprint arXiv:1605.00172, 2016. [This is a different document from the one with the same title on Doron Zeilberger's web site]

Crossrefs

Column k=6 of A284308.

Extensions

More terms from Alois P. Heinz, Mar 24 2017

A274308 Number of n-tuples of singular vectors of a 3 X 3 X 3 X ... X 3 n-dimensional tensor.

Original entry on oeis.org

1, 3, 37, 997, 44121, 2882071, 260415373, 31088448777, 4737782756017, 897380763253291, 206773800208348341, 56951114596754707693, 18476855531112777659017, 6973886287904020598308287, 3029760395576715276955711261, 1501087423496953812426438796561
Offset: 1

Views

Author

N. J. A. Sloane, Jun 21 2016

Keywords

Crossrefs

Programs

  • Maple
    ans:=[];
    for d from 1 to 10 do
    for h from 1 to d do zh[h]:=add(z[i],i=1..d)-z[h]; od;
    t1:= expand(simplify( mul( (zh[i]^3-z[i]^3) / (zh[i]-z[i]), i=1..d)));
    a:=t1; for i from 1 to d do a:=coeff(a,z[i],2); od;
    ans:=[op(ans),a];
    od:
    ans;
  • Mathematica
    a[n_] := Module[{s, x, xx, xd, f}, s = Total[xx = Array[x, n]]; xd = {#, 0, 2}& /@ xx; f = 1; Do[f = Series[f(s^2 - s x[i] + x[i]^2), Sequence @@ Evaluate[xd]], {i, 1, n}]; SeriesCoefficient[f, Sequence @@ Evaluate[xd]] ];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Nov 26 2018 *)
  • PARI
    P(n, t='t) = {
      my(z=vector(n, k, eval(Str("z", k))),
         s1=sum(k=1, #z, z[k]), s2=sum(k=1, #z, z[k]^2), s12=(s1^2 - s2)/2,
         f=vector(n, k, s2 + t*(s12 - z[k]*(s1 - z[k])) + z[k]*(s1 - z[k])), g=1);
      for (i=1, n, g *= f[i]; for(j=1, n, g=substpol(g, z[j]^3, 0)));
      for (k=1, n, g=polcoef(g, 2, z[k]));
      g;
    };
    vector(10, n, P(n,2)) \\ Gheorghe Coserea, Nov 27 2018

Extensions

a(11)-a(15) from Gheorghe Coserea, Jun 29 2016
a(16) from Alois P. Heinz, Mar 24 2017
Showing 1-3 of 3 results.