A283926 Denominators of poly-Bernoulli numbers B_n^(k) with k=7.
1, 128, 279936, 5971968, 699840000000, 93312000000, 115269666624000000, 35129803161600000, 160060165655040000000, 1016255020032000000, 103970660613603049728000000, 240047701272387993600000, 41516393959179372527058885120000000
Offset: 0
Examples
B_0^(7) = 1, B_1^(7) = 1/128, B_2^(7) = -1931/279936, B_3^(7) = 32459/5971968, ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..407
- Wikipedia, Poly-Bernoulli number
Programs
-
Mathematica
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-7), {m, 0, n}]; Table[Denominator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
-
PARI
B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-7)); for(n=0, 15, print1(numerator(B(n)),", ")) \\ Indranil Ghosh, Mar 18 2017