A283925 Numerators of poly-Bernoulli numbers B_n^(k) with k=7.
1, 1, -1931, 32459, -2310243527, 56642411, 229396175476157, -106580201025857, 113274473629427263, 5016925009330883, -816236427314937438059737, -1108823743074112124111, 1385996135483315761385354011661489
Offset: 0
Examples
B_0^(7) = 1, B_1^(7) = 1/128, B_2^(7) = -1931/279936, B_3^(7) = 32459/5971968, ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..269
- Wikipedia, Poly-Bernoulli number
Crossrefs
Cf. A283926.
Programs
-
Mathematica
B[n_]:= Sum[((-1)^(m + n))*m!*StirlingS2[n, m] * (m + 1)^(-7), {m, 0, n}]; Table[Numerator[B[n]], {n, 0, 15}] (* Indranil Ghosh, Mar 18 2017 *)
-
PARI
B(n) = sum(m=0, n, ((-1)^(m + n)) * m! * stirling(n, m, 2) * (m + 1)^(-7)); for(n=0, 15, print1(numerator(B(n)),", ")) \\ Indranil Ghosh, Mar 18 2017