cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283980 a(n) = A003961(n)*A006519(n).

Original entry on oeis.org

1, 6, 5, 36, 7, 30, 11, 216, 25, 42, 13, 180, 17, 66, 35, 1296, 19, 150, 23, 252, 55, 78, 29, 1080, 49, 102, 125, 396, 31, 210, 37, 7776, 65, 114, 77, 900, 41, 138, 85, 1512, 43, 330, 47, 468, 175, 174, 53, 6480, 121, 294, 95, 612, 59, 750, 91, 2376, 115, 186, 61, 1260, 67, 222, 275, 46656, 119, 390, 71, 684, 145, 462, 73, 5400, 79, 246, 245
Offset: 1

Views

Author

Antti Karttunen, Mar 19 2017

Keywords

Comments

Completely multiplicative since both A003961 and A006519 are. - Andrew Howroyd, Jul 25 2018

Examples

			From _Michael De Vlieger_, Dec 29 2019: (Start)
a(1) = 1 since 1 is the empty product.
a(2) = 6 because 2 = 2^1 in form p_k^e; switching p_(k+1) for p, we have 3^1 = 3, and the largest power of 2 dividing 2 is 2^1 = 2; thus 3 * 2 = 6.
a(4) = 36 since 4 = 2^2 -> 4(3^2).
a(6) = 30 since 6 = 2^1 * 3^1 -> 2(3 * 5).
a(12) = 180 since 12 = 2^2 * 3 -> 4(3^2 * 5) = 4(45) = 180.
a(30) = 210 since 30 = 2 * 3 * 5 -> 2(3 * 5 * 7) = 210.
(End)
		

Crossrefs

Programs

  • Mathematica
    Array[(Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1])*2^IntegerExponent[#, 2] &, 75] (* Michael De Vlieger, Dec 29 2019 *)
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==2, 6, nextprime(p+1))^e)} \\ Andrew Howroyd, Jul 25 2018
    
  • Python
    from sympy import nextprime, factorint
    from math import prod
    def A283980(n): return prod(nextprime(p)**e if p > 2 else 6**e for p, e in factorint(n).items()) # Chai Wah Wu, Dec 08 2022
  • Scheme
    (define (A283980 n) (* (A006519 n) (A003961 n)))
    

Formula

a(n) = A003961(n)*A006519(n).
From Michael De Vlieger, Dec 29 2019: (Start)
a(p_k) = p_(k+1) for odd prime p.
a(2^k) = 6^k.
a(p_k#) = p_(k+1)# for p_k# = A002110(k). (End)