cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A329886 Primorial inflation of Doudna-tree: a(0) = 1, a(1) = 2; for n > 1, if n is even, a(n) = A283980(a(n/2)), and if n is odd, then a(n) = 2*a((n-1)/2).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 36, 8, 210, 60, 180, 24, 900, 72, 216, 16, 2310, 420, 1260, 120, 6300, 360, 1080, 48, 44100, 1800, 5400, 144, 27000, 432, 1296, 32, 30030, 4620, 13860, 840, 69300, 2520, 7560, 240, 485100, 12600, 37800, 720, 189000, 2160, 6480, 96, 5336100, 88200, 264600, 3600, 1323000, 10800, 32400, 288, 9261000
Offset: 0

Views

Author

Antti Karttunen, Dec 24 2019

Keywords

Examples

			This irregular table can be represented as a binary tree. Each child to the left is obtained by applying A283980 to the parent, and each child to the right is obtained by doubling the parent:
                                     1
                                     |
                  ...................2...................
                 6                                       4
      30......../ \........12                 36......../ \........8
      / \                 / \                 / \                 / \
     /   \               /   \               /   \               /   \
    /     \             /     \             /     \             /     \
  210      60         180     24          900      72         216      16
etc.
A329887 is the mirror image of the same tree. See also A342000.
		

Crossrefs

Programs

  • Mathematica
    Block[{a}, a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ@ n, (Times @@ Map[Prime[PrimePi@#1 + 1]^#2 & @@ # &, FactorInteger[#]] - Boole[# == 1])*2^IntegerExponent[#, 2] &[a[n/2]], 2 a[(n - 1)/2]]; Array[a, 57, 0]]
    (* or, via Doudna *)
    Map[Times @@ Flatten@ MapIndexed[ConstantArray[Prime[First[#2]], #1] &, Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} &@ Sort[Flatten[ConstantArray[PrimePi@#1, #2] & @@@ FactorInteger[#]], Greater]] &, Nest[Append[#1, Prime[1 + BitLength[#2] - DigitCount[#2, 2, 1]]*#1[[#2 - 2^Floor@ Log2@ #2 + 1]]] & @@ {#, Length@ #} &, {1}, 57] ] (* Michael De Vlieger, Mar 05 2021 *)
  • PARI
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A329886(n) = if(n<2,1+n,if(!(n%2),A283980(A329886(n/2)),2*A329886(n\2)));

Formula

a(0) = 1, a(1) = 2; for n > 1, if n is even, a(n) = A283980(a(n/2)), and if n is odd, then a(n) = 2*a((n-1)/2).
a(n) = A108951(A005940(1+n)).
For n >= 1, a(n) = A329887(A054429(n)).

Extensions

Name amended by Antti Karttunen, Mar 05 2021

A330683 a(n) is the position of A283980(A025487(n)) in A025487.

Original entry on oeis.org

1, 4, 11, 9, 23, 20, 44, 41, 22, 79, 38, 73, 43, 131, 69, 124, 77, 212, 118, 72, 201, 54, 110, 129, 327, 191, 123, 312, 93, 181, 209, 493, 300, 199, 474, 154, 286, 128, 324, 725, 190, 454, 147, 272, 310, 697, 245, 434, 208, 490, 1044, 299, 671, 114, 232, 416, 469, 1008, 374, 646, 321, 721, 1481, 451, 974, 186, 359
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2019

Keywords

Crossrefs

Permutation of A329897.
Cf. A025487, A085089, A101296, A181815, A283980, A329898 (positive integers not in this sequence), A329904 (a left inverse), A329906, A330681.

Programs

  • Mathematica
    (* First, load the function f at A025487, then: *)
    With[{s = Union@ Flatten@ f@ 10}, TakeWhile[#, # != 0 &] &@ Map[If[# > Max@ s, 0, FirstPosition[s, #][[1]] ] &[(Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1])*2^IntegerExponent[#, 2]] &, s]] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    upto_e = 101;
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A330683list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t, v025487); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); v025487 = vecsort(Vec(lista)); lista = List([]); for(i=1,oo,if(!(t=vecsearch(v025487,A283980(v025487[i]))),return(Vec(lista)), listput(lista,t))); };
    v330683 = A330683list(upto_e);
    A330683(n) = v330683[n];

Formula

For all n >= 1, A329904(a(n)) = n.

A329887 a(0) = 1, a(1) = 2; for n > 1, if n is even, then a(n) = 2*a(n/2), and if n is odd, a(n) = A283980(a((n-1)/2)).

Original entry on oeis.org

1, 2, 4, 6, 8, 36, 12, 30, 16, 216, 72, 900, 24, 180, 60, 210, 32, 1296, 432, 27000, 144, 5400, 1800, 44100, 48, 1080, 360, 6300, 120, 1260, 420, 2310, 64, 7776, 2592, 810000, 864, 162000, 54000, 9261000, 288, 32400, 10800, 1323000, 3600, 264600, 88200, 5336100, 96, 6480, 2160, 189000, 720, 37800, 12600, 485100, 240
Offset: 0

Views

Author

Antti Karttunen, Dec 24 2019

Keywords

Examples

			This irregular table can be represented as a binary tree. Each child to the left is obtained by doubling the parent, and each child to the right is obtained by applying A283980 to the parent:
                                     1
                                     |
                  ...................2...................
                 4                                       6
       8......../ \........36                 12......../ \........30
      / \                 / \                 / \                 / \
     /   \               /   \               /   \               /   \
    /     \             /     \             /     \             /     \
  16      216         72      900         24      180         60       210
etc.
A329886 is the mirror image of the same tree.
		

Crossrefs

Permutation of A025487.
Cf. also A322827, A329886.

Programs

  • Mathematica
    {1}~Join~Nest[Append[#1, If[EvenQ@ #2, 2 #1[[#2/2]], (Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1])*2^IntegerExponent[#, 2] &[#1[[(#2 - 1)/2]] ]]] & @@ {#, Length@ # + 1} &, {2}, 55] (* Michael De Vlieger, Dec 29 2019 *)
  • PARI
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A329887(n) = if(n<2,1+n,if(n%2,A283980(A329887(n\2)),2*A329887(n/2)));

Formula

a(0) = 1, a(1) = 2; for n > 1, if n is odd, a(n) = A283980(a((n-1)/2)), and if n is even, then a(n) = 2*a(n/2).
a(n) = A108951(A163511(n)).
a(2^n) = 2^(1+n). [And all the terms following after a(2^n) are > 2^(1+n).]
For n >= 1, a(n) = A329886(A054429(n)).

A330681 a(n) = A283980(A025487(n)).

Original entry on oeis.org

1, 6, 36, 30, 216, 180, 1296, 1080, 210, 7776, 900, 6480, 1260, 46656, 5400, 38880, 7560, 279936, 32400, 6300, 233280, 2310, 27000, 45360, 1679616, 194400, 37800, 1399680, 13860, 162000, 272160, 10077696, 1166400, 226800, 8398080, 83160, 972000, 44100, 1632960, 60466176, 189000, 6998400, 69300, 810000, 1360800
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2019

Keywords

Comments

After 1, contains only the least representatives of such prime signatures where the maximal exponent occurs more than once. However, here the terms are not in ascending order.

Examples

			For example, 180 = 2^2 * 3^2 * 5^1 is present, because the maximal exponent in its prime factorization is 2, which occurs as an exponent of both 2 and 3, and because 180 is the minimal representative of the prime signature (2,2,1), as A046523(180) = 180.
		

Crossrefs

Programs

  • PARI
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(64);
    A025487(n) = v025487[n];
    A330681(n) = A283980(A025487(n));

Formula

a(n) = A283980(A025487(n)).
A046523(a(n)) = a(n).
A085089(a(n)) = A101296(a(n)) = A330683(n).

A003961 Completely multiplicative with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119
Offset: 1

Views

Author

Keywords

Comments

Meyers (see Guy reference) conjectures that for all r >= 1, the least odd number not in the set {a(i): i < prime(r)} is prime(r+1). - N. J. A. Sloane, Jan 08 2021
Meyers' conjecture would be refuted if and only if for some r there were such a large gap between prime(r) and prime(r+1) that there existed a composite c for which prime(r) < c < a(c) < prime(r+1), in which case (by Bertrand's postulate) c would necessarily be a term of A246281. - Antti Karttunen, Mar 29 2021
a(n) is odd for all n and for each odd m there exists a k with a(k) = m (see A064216). a(n) > n for n > 1: bijection between the odd and all numbers. - Reinhard Zumkeller, Sep 26 2001
a(n) and n have the same number of distinct primes with (A001222) and without multiplicity (A001221). - Michel Marcus, Jun 13 2014
From Antti Karttunen, Nov 01 2019: (Start)
More generally, a(n) has the same prime signature as n, A046523(a(n)) = A046523(n). Also A246277(a(n)) = A246277(n) and A287170(a(n)) = A287170(n).
Many permutations and other sequences that employ prime factorization of n to encode either polynomials, partitions (via Heinz numbers) or multisets in general can be easily defined by using this sequence as one of their constituent functions. See the last line in the Crossrefs section for examples.
(End)

Examples

			a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45.
a(A002110(n)) = A002110(n + 1) / 2.
		

References

  • Richard K. Guy, editor, Problems From Western Number Theory Conferences, Labor Day, 1983, Problem 367 (Proposed by Leroy F. Meyers, The Ohio State U.).

Crossrefs

See A045965 for another version.
Row 1 of table A242378 (which gives the "k-th powers" of this sequence), row 3 of A297845 and of A306697. See also arrays A066117, A246278, A255483, A308503, A329050.
Cf. A064989 (a left inverse), A064216, A000040, A002110, A000265, A027746, A046523, A048673 (= (a(n)+1)/2), A108228 (= (a(n)-1)/2), A191002 (= a(n)*n), A252748 (= a(n)-2n), A286385 (= a(n)-sigma(n)), A283980 (= a(n)*A006519(n)), A341529 (= a(n)*sigma(n)), A326042, A049084, A001221, A001222, A122111, A225546, A260443, A245606, A244319, A246269 (= A065338(a(n))), A322361 (= gcd(n, a(n))), A305293.
Cf. A249734, A249735 (bisections).
Cf. A246261 (a(n) is of the form 4k+1), A246263 (of the form 4k+3), A246271, A246272, A246259, A246281 (n such that a(n) < 2n), A246282 (n such that a(n) > 2n), A252742.
Cf. A275717 (a(n) > a(n-1)), A275718 (a(n) < a(n-1)).
Cf. A003972 (Möbius transform), A003973 (Inverse Möbius transform), A318321.
Cf. A300841, A305421, A322991, A250469, A269379 for analogous shift-operators in other factorization and quasi-factorization systems.
Cf. also following permutations and other sequences that can be defined with the help of this sequence: A005940, A163511, A122111, A260443, A206296, A265408, A265750, A275733, A275735, A297845, A091202 & A091203, A250245 & A250246, A302023 & A302024, A302025 & A302026.
A version for partition numbers is A003964, strict A357853.
A permutation of A005408.
Applying the same transformation again gives A357852.
Other multiplicative sequences: A064988, A357977, A357978, A357980, A357983.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Haskell
    a003961 1 = 1
    a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n))))))
    ;; Antti Karttunen, May 20 2014
    
  • Maple
    a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],nextprime(1+f[k,1])^f[k,2]))
    
  • PARI
    a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
    
  • Perl
    use ntheory ":all";  sub a003961 { vecprod(map { next_prime($) } factor(shift)); }  # _Dana Jacobsen, Mar 06 2016
    
  • Python
    from sympy import factorint, prime, primepi, prod
    def a(n):
        f=factorint(n)
        return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f)
    [a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017

Formula

If n = Product p(k)^e(k) then a(n) = Product p(k+1)^e(k).
Multiplicative with a(p^e) = A000040(A000720(p)+1)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A000040(A049084(A027748(n,k))+1)^A124010(n,k). - Reinhard Zumkeller, Oct 09 2011 [Corrected by Peter Munn, Nov 11 2019]
A064989(a(n)) = n and a(A064989(n)) = A000265(n). - Antti Karttunen, May 20 2014 & Nov 01 2019
A001221(a(n)) = A001221(n) and A001222(a(n)) = A001222(n). - Michel Marcus, Jun 13 2014
From Peter Munn, Oct 31 2019: (Start)
a(n) = A225546((A225546(n))^2).
a(A225546(n)) = A225546(n^2).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 2.06399637... . - Amiram Eldar, Nov 18 2022

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A007416 The minimal numbers: sequence A005179 arranged in increasing order.

Original entry on oeis.org

1, 2, 4, 6, 12, 16, 24, 36, 48, 60, 64, 120, 144, 180, 192, 240, 360, 576, 720, 840, 900, 960, 1024, 1260, 1296, 1680, 2520, 2880, 3072, 3600, 4096, 5040, 5184, 6300, 6480, 6720, 7560, 9216, 10080, 12288, 14400, 15120, 15360, 20160, 25200, 25920, 27720, 32400, 36864, 44100
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that there is no x < k such that A000005(x) = A000005(k). - Benoit Cloitre, Apr 28 2002
A047983(a(n)) = 0. - Reinhard Zumkeller, Nov 03 2015
Subsequence of A025487. If some m in A025487 is the first term in that sequence having its number of divisors, m is in this sequence. - David A. Corneth, Aug 31 2019

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 86.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A025487; A002182 is a subsequence.
Cf. A000005, A047983, A166721 (subsequence of squares).
Cf. A053212 and A064787 (the sequence {A000005(a(n))} and its inverse permutation).

Programs

  • Haskell
    a007416 n = a007416_list !! (n-1)
    a007416_list = f 1 [] where
       f x ts = if tau `elem` ts then f (x + 1) ts else x : f (x + 1) (tau:ts)
                where tau = a000005' x
    -- Reinhard Zumkeller, Apr 18 2015
  • Maple
    for n from 1 to 10^5 do
      t:= numtheory:-tau(n);
      if not assigned(B[t]) then B[t]:= n fi;
    od:
    sort(map(op,[entries(B)]));# Robert Israel, Nov 11 2015
  • Mathematica
    A007416 = Reap[ For[ s = 1, s <= 10^5, s++, If[ Abs[ Product[ DivisorSigma[0, i] - DivisorSigma[0, s], {i, 1, s-1}]] > 0, Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Nov 19 2012, after Pari *)
  • PARI
    for(s=1,10^6,if(abs(prod(i=1,s-1,numdiv(i)-numdiv(s)))>0,print1(s,",")))
    
  • PARI
    is(n)=my(d=numdiv(n));for(i=1,n-1,if(numdiv(i)==d, return(0))); 1 \\ Charles R Greathouse IV, Feb 20 2013
    
  • PARI
    A283980(n,f=factor(n))=prod(i=1, #f~, my(p=f[i, 1]); if(p==2, 6, nextprime(p+1))^f[i, 2])
    A025487do(e) = my(v=List([1, 2]), i=2, u = 2^e, t); while(v[i] != u, if(2*v[i] <= u, listput(v, 2*v[i]); t = A283980(v[i]); if(t <= u, listput(v, t))); i++); Set(v)
    winnow(v,lim=v[#v])=my(m=Map(),u=List()); for(i=1,#v, if(v[i]>lim, break); my(t=numdiv(v[i])); if(!mapisdefined(m,t), mapput(m,t,0); listput(u,v[i]))); m=0; Vec(u)
    list(lim)=winnow(A025487do(logint(lim\1-1,2)+1),lim) \\ Charles R Greathouse IV, Nov 17 2022
    

A283477 If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 180, 360, 210, 420, 1260, 2520, 6300, 12600, 37800, 75600, 2310, 4620, 13860, 27720, 69300, 138600, 415800, 831600, 485100, 970200, 2910600, 5821200, 14553000, 29106000, 87318000, 174636000, 30030, 60060, 180180, 360360, 900900, 1801800, 5405400, 10810800, 6306300, 12612600, 37837800, 75675600
Offset: 0

Views

Author

Antti Karttunen, Mar 16 2017

Keywords

Comments

a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.
This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:
1
|
...................2....................
6 12
30......../ \........60 180......../ \......360
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
210 420 1260 2520 6300 12600 37800 75600
etc.

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A283477(n) = prod(i=0,exponent(n),if(bittest(n,i),vecprod(primes(1+i)),1)) \\ Edited by M. F. Hasler, Nov 11 2019
    
  • Python
    from sympy import prime, primerange, factorint
    from operator import mul
    from functools import reduce
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a108951(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu
    def a(n): return a108951(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017
    
  • Python
    from sympy import primorial
    from math import prod
    def A283477(n): return prod(primorial(i) for i, b in enumerate(bin(n)[:1:-1],1) if b =='1') # Chai Wah Wu, Dec 08 2022
  • Scheme
    (define (A283477 n) (A108951 (A019565 n)))
    ;; Recursive "binary tree" implementation, using memoization-macro definec:
    (definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))
    

Formula

a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).
Other identities. For all n >= 0 (or for n >= 1):
a(2n+1) = 2*a(2n).
a(n) = A108951(A019565(n)).
A097248(a(n)) = A283475(n).
A007814(a(n)) = A051903(a(n)) = A000120(n).
A001221(a(n)) = A070939(n).
A001222(a(n)) = A029931(n).
A048675(a(n)) = A005187(n).
A248663(a(n)) = A006068(n).
A090880(a(n)) = A283483(n).
A276075(a(n)) = A283984(n).
A276085(a(n)) = A283985(n).
A046660(a(n)) = A124757(n).
A056169(a(n)) = A065120(n). [seems to be]
A005361(a(n)) = A284001(n).
A072411(a(n)) = A284002(n).
A007913(a(n)) = A284003(n).
A000005(a(n)) = A284005(n).
A324286(a(n)) = A324287(n).
A276086(a(n)) = A324289(n).
A267263(a(n)) = A324341(n).
A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]
G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - Ilya Gutkovskiy, Aug 19 2019

Extensions

More formulas and the binary tree illustration added by Antti Karttunen, Mar 19 2017
Four more linking formulas added by Antti Karttunen, Feb 25 2019

A329898 a(n) is the position of 2*A025487(n) in A025487.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Antti Karttunen, Dec 24 2019

Keywords

Comments

Numbers k for which A007814(A025487(k)) > A007949(A025487(k)), i.e., numbers k for which the 2-adic valuation of A025487(k) is larger than its 3-adic valuation.
Numbers k for which A181815(k) is even.

Crossrefs

Cf. A329897 (complement), A330683 (and its permutation).
Cf. A007814, A007949, A025487, A329904 (a left inverse), A329906.
Positions of even terms in A181815, zeros in A330682.

Programs

  • Mathematica
    (* First, load the function f at A025487, then: *)
    With[{s = Union@ Flatten@ f@ 6}, Map[If[2 # > Max@ s, Nothing, FirstPosition[s, 2 #][[1]] ] &, s]] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    upto_e = 64; \\ 64 -> 43608 terms.
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A329898list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t, v025487); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t =
    A283980(lista[i]); if(t <= u, listput(lista,t))); i++); v025487 = vecsort(Vec(lista)); lista = List([]); for(i=1,oo,if(!(t=vecsearch(v025487,2*(v025487[i]))),return(Vec(lista)), listput(lista,t))); };
    v329898 = A329898list(upto_e);
    A329898(n) = v329898[n];

Formula

For all n >= 1, A329904(a(n)) = n.

A330687 Positions of records in A050377, number of ways to factor n into "Fermi-Dirac primes" (A050376).

Original entry on oeis.org

1, 4, 16, 64, 144, 256, 576, 1024, 1296, 2304, 5184, 9216, 20736, 82944, 186624, 331776, 746496, 1327104, 2073600, 2985984, 5308416, 8294400, 18662400, 21233664, 26873856, 33177600, 47775744, 51840000, 74649600, 107495424, 132710400, 207360000, 429981696, 530841600, 671846400, 829440000, 1194393600, 1719926784, 1866240000, 2687385600
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Comments

From David A. Corneth, Dec 29 2019: (Start)
Each term is a perfect square. Proof: A050377(n) is multiplicative with a(p^e) = A018819(e) and A018819(2k) = A018819(2k+1) and this sequence considers just records so we only need exponents of the form 2k; i.e., terms are squares.
Furthermore, the exponent 2 occurs at most once in the prime factorization of a(n) as A018819(2)^2 = A018819(4) = 4. So if the last two exponents in the prime factorization of m are 2's then setting the first of those two exponents to 4 and the other to 0 gives the same A050377(m).
Example of an application of this proof: we have 3600 = 2^4 * 3^2 * 5^2. We see the last two exponents are 2's so we can set the first of those two to 4 and the second to 0. This gives 2^4 * 3^4 = 1296 and, indeed, A050377(1296) = A050377(3600) = 16.
It seems that most exponents of a(n) are divisible by 4.
More specifically: Let S(n) be the list, possibly with duplicates, of exponents occurring in the prime factorizations of terms with the sum of exponents in the prime factorization <= n.
Let R(n) = |{x : x==4, S(n)}| / |S(n)|.
For example, S(8) is found from the following terms: 4, 16, 64, 144, 256, 576 and 1296 as the exponents in the prime factorization are (2), (4), (6), (4, 2), (8), (6, 2), (4, 4). The sums of each of these exponents per term is <= 8. There are 10 exponents listed. Of these 10 there are 5 that are divisible by 4. Therefore R(8) = 5/10.
Then it seems that R(n) tends to some value > 0.8 as n grows. (End)

Crossrefs

Cf. A018819, A050376, A050377, A329900, A330684 (square roots), A330688 (the record values), A330689 (primorial deflation).
Subsequence of A025487.

Programs

  • Mathematica
    Block[{s = Rest@ Nest[Function[{a, n, b}, Append[a, {Times @@ Map[a[[# + 1, -1]] &, FactorInteger[n][[All, -1]] ], b}]] @@ {#1, #2, #1[[-1, -1]] + If[EvenQ@ #2, #1[[#2/2 + 1, -1]], 0 ]} & @@ {#, Length@ #} &, {{0, 1}, {1, 1}}, 10^5][[All, 1]], t}, t = Union@ FoldList[Max, s]; Map[FirstPosition[s, #][[1]] &, t]] (* Michael De Vlieger, Dec 29 2019 *)
  • PARI
    upto_e = 101; \\ 101 --> 211 terms.
    A018819(n) = if( n<1, n==0, if( n%2, A018819(n-1), A018819(n/2)+A018819(n-1))); \\ From A018819
    v018819 = vector(upto_e,n,A018819(n)); \\ Precompute.
    A050377(n) = factorback(apply(e -> v018819[e], factor(n)[, 2]));
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A330687list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t, m=0, v025487); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); v025487 = vecsort(Vec(lista)); lista = List([]); for(i=1,#v025487,if((t=A050377(v025487[i]))>m, listput(lista,v025487[i]); m=t)); Vec(lista); };
    v330687 = A330687list(upto_e);
    A330687(n) = v330687[n];
    for(n=1,#v330687,print1(A330687(n),", "));

Formula

A050377(a(n)) = A330688(n).
A329900(a(n)) = A330689(n).
a(n) = A330684(n)^2.
Showing 1-10 of 17 results. Next