cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284188 a(1)=2; thereafter a(n+1) = a(n)+i if a(n) is a prime and a(1),...,a(n) contains i primes, or a(n+1) = a(n)-i if a(n) is composite and a(1),...,a(n) contains i primes.

Original entry on oeis.org

2, 3, 5, 8, 5, 9, 5, 10, 5, 11, 18, 11, 19, 28, 19, 29, 40, 29, 41, 54, 41, 55, 41, 56, 41, 57, 41, 58, 41, 59, 78, 59, 79, 100, 79, 101, 124, 101, 125, 101, 126, 101, 127, 154, 127, 155, 127, 156, 127, 157, 188, 157, 189, 157, 190, 157, 191, 226, 191, 227, 264, 227, 265
Offset: 1

Views

Author

Bob Selcoe, Mar 21 2017

Keywords

Comments

Without repeated terms, the primes appear in order as A070865.
Variant of A284172; the difference is that in A284172, a(n+1) = a(n)-i if a(n) is composite and a(1),...,a(n) contains i composites (rather than i primes).
For n >= 3: When a(n) = prime p it is followed by an even number j at a(n+1); p repeats k-j times (where k is the smallest prime > j), appearing at a(n+2m) {m=1..k-j}. a(n+2m+1) = p+m until p+m = k (immediately following the final p); k now becomes "new p" immediately followed by a "new j", and the process repeats.

Examples

			a(10) = 11; there are 7 primes in the sequence up to and including a(10) so a(11) = 11+7 = 18. 18 is composite so a(12) = 18-7 = 11.  Now there are 8 primes in the sequence; and since 11 is prime, a(13) = 11+8 = 19 (the 9th prime in the sequence), so a(14) = 28.
		

Crossrefs

Programs

  • Maple
    c:= proc(n) option remember; `if`(n<1, 0,
          `if`(isprime(a(n)), 1, 0)+c(n-1))
        end:
    a:= proc(n) option remember; `if`(n=1, 2, (m->
          `if`(isprime(m), 1, -1)*c(n-1)+m)(a(n-1)))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 15 2017
  • Mathematica
    Block[{c = 1, m = 2, n}, {2}~Join~Reap[Do[If[PrimeQ[m], Set[n, m + c]; c++, Set[n, m - c + 1]]; Sow[n]; m = n, 63]][[-1, -1]]] (* Michael De Vlieger, Oct 20 2021 *)
  • PARI
    lista(nn) = {print1(a=2, ", "); nbp = 1; for (n=2, nn, if (isprime(a), a += nbp, a -= nbp); print1(a, ", "); if (isprime(a), nbp++););} \\ Michel Marcus, Mar 24 2017