cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284258 a(n) = number of distinct prime factors of n that are > the square of smallest prime factor of n, a(1) = 0.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 24 2017

Keywords

Examples

			For n = 50, 2*5*5, the prime factor > 2^2 is 5, which is counted only once, thus a(50) = 1.
For n = 70, 2*5*7, the prime factors > 2^2 are 5 and 7, thus a(70) = 2.
		

Crossrefs

Cf. A251726 (gives the positions of zeros after the initial a(1)=0).
Differs from related A284256 for the first time at n=50, where a(50)=1, while A284256(50)=2.

Programs

  • Mathematica
    Table[If[n == 1, 0, Count[#, d_ /; d > First[#]^2] &@ FactorInteger[n][[All, 1]]], {n, 120}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    A(n) = if(n<2, return(1), my(f=factor(n)[, 1]); for(i=2, #f, if(f[i]>f[1]^2, return(f[i]))); return(1));
    a(n) = if(A(n)==1, 1, A(n)*a(n/A(n)));
    for(n=1, 150, print1(omega(a(n)),", ")) \\ Indranil Ghosh, after David A. Corneth, Mar 24 2017
    
  • Python
    from sympy import primefactors
    def omega(n): return len(primefactors(n))
    def A(n):
        for i in primefactors(n):
            if i>min(primefactors(n))**2: return i
        return 1
    def a(n): return 1 if A(n)==1 else A(n)*a(n//A(n))
    print([omega(a(n)) for n in range(1, 151)]) # Indranil Ghosh, Mar 24 2017
  • Scheme
    (define (A284258 n) (A001221 (A284254 n)))
    

Formula

a(n) = Sum_{p|n, p prime and > spf(n)^2} sign(p), where spf(n) (A020639) gives the smallest prime factor of n, and sign(p) = A057427(p) = 1 for all p.
a(n) = A001221(A284254(n)).
a(n) = A001221(n) - A284259(n).
a(n) <= A284256(n).