A284458 Number of pairs (f,g) of endofunctions on [n] such that the composite function gf has no fixed point.
1, 0, 2, 156, 16920, 2764880, 650696400, 210105425628, 89425255439744, 48588905856409920, 32845298636854828800, 27047610425293718239100, 26664178085975252011318272, 31009985808408471580603417296, 42017027730087624384021945067520
Offset: 0
Keywords
Examples
For two boys A,B and two girls A',B', the a(2) possibilities are: A loves A' who loves B who loves B' who loves A; A loves B' who loves B who loves A' who loves A.
Links
- Robert Israel, Table of n, a(n) for n = 0..214
- Math StackExchange, An unexpected application of non-trivial combinatorics, 2014.
- Math StackExchange, Couple Probability, 2014.
- Eric Weisstein's MathWorld, Confluent Hypergeometric Function of the Second Kind
Programs
-
Maple
a:=n->add((-1)^k*binomial(n,k)^2*k!*n^(2*(n-k)),k=0..n): seq(a(n),n=0..15);
-
Mathematica
Table[Sum[(-1)^k Binomial[n,k]^2 * k! * n^(2*(n - k)), {k, 0, n}], {n, 1, 15}] (* Indranil Ghosh, Mar 27 2017 *) Table[HypergeometricU[-n, 1, n^2], {n, 1, 15}] (* Jean-François Alcover, Mar 29 2017 *)
-
PARI
a(n) = sum(k=0, n, (-1)^k * binomial(n,k)^2 * k! * n^(2*(n-k))); \\ Michel Marcus, Apr 04 2017
Formula
a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k)^2 * k! * n^(2*(n-k)).
Comments