A284554 Prime factorization representation of Stern polynomials B(n,x) with only the odd powers of x present: a(n) = A248101(A260443(n)).
1, 1, 3, 3, 1, 9, 3, 3, 7, 9, 3, 27, 7, 9, 21, 21, 1, 63, 21, 27, 49, 81, 21, 189, 7, 63, 147, 189, 7, 441, 21, 21, 13, 63, 21, 1323, 49, 567, 1029, 1323, 7, 3969, 1029, 1701, 343, 3969, 147, 1323, 13, 441, 1029, 9261, 49, 27783, 1029, 1323, 91, 3087, 147, 9261, 91, 441, 273, 273, 1, 819, 273, 1323, 637, 27783, 1029, 64827, 91, 27783, 50421, 583443, 343
Offset: 0
Keywords
Examples
n A260443(n) Stern With even powers prime factorization polynomial of x cleared -> a(n) ------------------------------------------------------------------------ 0 1 (empty) B_0(x) = 0 0 | 1 1 2 p_1 B_1(x) = 1 0 | 1 2 3 p_2 B_2(x) = x x | 3 3 6 p_2 * p_1 B_3(x) = x + 1 x | 3 4 5 p_3 B_4(x) = x^2 0 | 1 5 18 p_2^2 * p_1 B_5(x) = 2x + 1 2x | 9 6 15 p_3 * p_2 B_6(x) = x^2 + x x | 3 7 30 p_3 * p_2 * p_1 B_7(x) = x^2 + x + 1 x | 3 8 7 p_4 B_8(x) = x^3 x^3 | 7 9 90 p_3 * p_2^2 * p_1 B_9(x) = x^2 + 2x + 1 2x | 9 10 75 p_3^2 * p_2 B_10(x) = 2x^2 + x x | 3
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8192
Crossrefs
Programs
-
Mathematica
a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &@ a@ n, {n, 0, 76}] (* Michael De Vlieger, Apr 05 2017 *)
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From Michel Marcus A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. Charles R Greathouse IV's code for "ps" in A186891 and A277013. A248101(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 2] *= (primepi(f[i, 1])+1) % 2; ); factorback(f); } \\ After Michel Marcus A284554(n) = A248101(A260443(n));
-
Scheme
(define (A284554 n) (A248101 (A260443 n)))
Comments