A284593 Square array read by antidiagonals: T(n,k) = the number of pairs of partitions of n and k respectively, such that each partition is composed of distinct parts and the pair of partitions have no part in common.
1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 1, 2, 3, 1, 1, 1, 1, 3, 4, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 5, 6, 3, 2, 3, 2, 3, 2, 3, 6, 8, 3, 3, 4, 3, 3, 4, 3, 3, 8, 10, 5, 4, 6, 5, 6, 5, 6, 4, 5, 10, 12, 5, 5, 6, 5, 6, 6, 5, 6, 5, 5, 12, 15, 7, 6, 8, 7, 8, 8, 8, 7, 8, 6, 7, 15
Offset: 0
Examples
Square array begins n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 | 1 1 1 2 2 3 4 5 6 8 10 12 15 18: A000009 1 | 1 0 1 1 1 2 2 3 3 5 5 7 8 10: A096765 2 | 1 1 0 1 2 2 2 3 4 5 6 7 9 11: A015744 3 | 2 1 1 2 2 3 4 6 6 8 9 12 15 18 4 | 2 1 2 2 2 3 5 5 7 9 10 14 15 19 5 | 3 2 2 3 3 6 6 8 9 12 16 19 22 28 6 | 4 2 2 4 5 6 8 9 11 16 18 22 27 33 7 | 5 3 3 6 5 8 9 14 16 20 23 29 34 41 ... T(3,7) = 6: the six pairs of partitions of 3 and 7 into distinct parts and with no parts in common are (3, 7), (3, 6 + 1), (3, 5 + 2), (3, 4 + 2 + 1), (2 + 1, 7) and (2 + 1, 4 + 3).
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
- H. S. Wilf, Lectures on Integer Partitions
Crossrefs
Programs
-
Maple
# A284593 as a square array ser := taylor(taylor(mul(1 + x^j + y^j, j = 1..10), x, 11), y, 11): convert(ser, polynom): s := convert(%, polynom): with(PolynomialTools): for n from 0 to 10 do CoefficientList(coeff(s, y, n), x) end do; # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+expand((x^i+1)*b(n-i, min(n-i, i-1))))) end: T:= (n, k)-> coeff(b(n+k$2), x, k): seq(seq(T(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Aug 24 2019
-
Mathematica
nmax = 12; M = CoefficientList[#, y][[;; nmax+1]]& /@ (Product[1 + x^j + y^j, {j, 1, nmax}] + O[x]^(nmax+1) // CoefficientList[#, x]& // Expand); T[n_, k_] := M[[n+1, k+1]]; Table[T[n-k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 07 2019 *)
Formula
O.g.f. Product_{j >= 1} (1 + x^j + y^j) = Sum_{n,k >= 0} T(n,k)*x^n*y^k (see Wilf, Example 7).
Antidiagonal sums are A032302.
Comments