A284701 Number of maximal matchings in the n-antiprism graph.
2, 6, 14, 46, 137, 354, 905, 2366, 6278, 16681, 44156, 116650, 308180, 814645, 2153984, 5695102, 15056494, 39804582, 105231559, 278204561, 735502187, 1944477640, 5140687360, 13590620330, 35930023287, 94989547620, 251127430313, 663914974741
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Antiprism Graph
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Maximal Independent Edge Set
- Index entries for linear recurrences with constant coefficients, signature (2,1,0,3,5,1,-2,-1).
Programs
-
Mathematica
LinearRecurrence[{2, 1, 0, 3, 5, 1, -2, -1}, {2, 6, 14, 46, 137, 354, 905, 2366}, 20] (* Eric W. Weisstein, May 17 2017 *) CoefficientList[Series[x*(-8*x^7-14*x^6+6*x^5+25*x^4+12*x^3+2*x+2)/(x^8 +2*x^7-x^6-5*x^5 -3*x^4-x^2-2*x+1), {x, 0, 50}], x] (* G. C. Greubel, May 17 2017 *) Table[RootSum[1 + 2 # - #^2 - 5 #^3 - 3 #^4 - #^6 - 2 #^7 + #^8 &, #^n &], {n, 10}] (* Eric W. Weisstein, May 26 2017 *)
-
PARI
Vec((-8*x^7-14*x^6+6*x^5+25*x^4+12*x^3+2*x+2)/(x^8+2*x^7-x^6-5*x^5-3*x^4-x^2-2*x+1)+O(x^20)) \\ Andrew Howroyd, May 16 2017
Formula
From Andrew Howroyd, May 16 2017 (Start)
a(n) = 2*a(n-1) + a(n-2) + 3*a(n-4) + 5*a(n-5) + a(n-6) - 2*a(n-7) - a(n-8) for n>8.
G.f.: x*(-8*x^7 - 14*x^6 + 6*x^5 + 25*x^4 + 12*x^3 + 2*x + 2)/(x^8 + 2*x^7 - x^6 - 5*x^5 - 3*x^4 - x^2 - 2*x + 1). (End)
Extensions
a(1)-a(2) and a(16)-a(28) from Andrew Howroyd, May 16 2017
Comments